DEST POSSIBLE COPY

Table 2b : Total numbers of HGPRT-mutant cells, mutant frequency and viability of Chinese heaster V79 cells after a 5-hour expesure to RO 40-7592/001 and CH 59 MIX

Dose	<u> </u>	Day :	Ce11 V	iebili	ty Day 7					H	GPRT-Hu	tent Cel	lls
ug/ml.	No.	Hean	RV X	Me.	Mean	CE X			Мо. (Б)		Heen	Sign.	MF per 10 cell
0.	150 176 175 187	172.0	100	185 150 205 166	176.5	48		0 0 0	8 0 0	0 0 0 2	0.3		3.8
5.	182 : 199 210 197	197.0	100	169 181 195 194	184.8	92		0		0	0.0		< 0.9
50.	110 118 121 129	119.5	69	148 166 189 181	171.0	86			0	0 0 1 3	0.8		9.7
200.	147 126 152 144	142.3	8 3	221 207 219 178	206.3	103					0.8		8.1
300.	162 152 149 127	147.5	86	177 194 176 167	178.5	89	0000	0) }	0.2		1.9
400.	33 33 39 35	35.0	20	101 101 106 85	98.3	49	000	000	0		0.1		1.7
Reference	Subst	Bnce : :	2AAF										
0.	150 176 175 187	172.0	100	185 150 205 166	176.5	88	0 0 0 1	0 0 1	000		0.3		3.8
60.	107 105 104 79	98.8	57	131 140 141 140	138.0	69	3 8 9	6 8 9	5 9 9		8.6		126.4

a: 200 cells were plated per dish b: 105 cells were plated per dish

XX for P =< 0.01

Trend: (+) increasing / (-) decreasing

C.5.e. Unscheduled DNA Synthesis with Tolcapone in Primary Cultures of Rat Hepatocytes

Research Report #: B-154,906 Sponsor Volume: 51:91

Summary:

The effect of tolcapone on unscheduled DNA synthesis was determined in primary cultures of rat hepatocytes. Only a narrow concentration of range 1-5 µg/ml was tested, since concentrations higher than 5 µg/ml were toxic. In one of three trials, concentrations of 1 and 4 µg/ml significantly increased nuclear grain counts, but a concentration-effect relationship was not evident; this is considered a spurious finding. The positive control 2-acetylaminofluorene produced the expected result.

Methods:

Drug Concentrations: Batch G PUL 557 089 in DMSO

Test Chemical	Subst	pg/ml	ntration	
	23 H90/ 0	/1	/2	
Solvent control: DMSO	0.0	0.0	0.0	
Ro 40-7592/001	1.0	1.0	0.5	
Ro 40-7592/001	5.0	5.01	1.0	
Ro 40-7592/001	10.02	10.02	2.0	
Ro 40-7592/001	25.0°	25.02	3.0	
Ro 40-7592/001	50.02	50.02	4.01	
Ro 40-7592/001	75.02	75.02	5.01	
Ro 40-7592/001	100.02	100.03	•	
Reference substance: 2AA	P 0.1	0.1	0.11	

Cell morphology of many cells had changed at this dose level No viable cells available

Experimental Procedure:

Rat hepatocytes were isolated by in situ liver perfusion of adult male Fu-albino rats on the day of experiment. Cells were seeded into plates containing a plastic coverslip for cell attachment at a density 1.5 x 10⁵ cells/plate. Four coverslips per dose were used to measure [3H]-thymidine incorporation, and one coverslip/dose was used to assess cell viability trypan blue exclusion. Additional coversliups were used to determine cell morphology and viability after exposure to test compounds.

The UDS assay was initiated within 5 hrs of cell seeding, by replacing the medium with medium containing [3H]-thymidine and the test compound. Exposures were for 18 hrs, and followed by washing, fixing, and rinsing. [3H]-Thymidine incorporation was determined autoradiographically by counting the number of silver grains in nuclei of non-replicating cells. Usually 100 cells that were not in S phase per dose (ca. 25/coverslip) were counted. Cytotoxicity was assessed by counting non-nuclear silver grains, and determination of net nuclear grains.

Statistics

Nuclear grain counts, cytoplasmic grain counts, and net nuclear grain counts were evaluated by one-way ANOVA with a post-hoc Fisher's least significant difference test (p<0.05).

Results:

Significant increases in nuclear grain counts in primary rat hepatocytes were observed only in the third experimental trial at concentrations of 1 and 4 μ g/ml (Table 1c). In two previous experiments with concentrations of 1 and 5 μ g/ml, no increase in nuclear grain counts were observed (Tables 1a and 1b).

Table 1a : Unscheduled DNA Synthesis (UDS) amony with freshly isolated nat hepatocytes after 18-hours exposure to Re 40-7592/001 (Experiment 23050/0)

Test Chemical	Dose	No.Call		Grain Cou	ets / Cell Cytoplasmic	Net Muclear
	Mg/ml	Analysed	> 5 (X)	Heen ± SD	Nean ± SD	Hean + SD
Negative control: DMSO	0.0	100	0	1.4 + 1.2	1.9 4 1.3	-0.5 g 1.5
Ro 40-7592/001 -	1.0	100	1	1.3 2 1.2	1.0 ± 1.1	-0.5 ± 1.1
Ro 40-7592/001	5.0	50	0	1.1 ± 1.0	1.4 ± 0.9	1
Reference substance: ZAAF	0.1	94	67	8.1 ± 4.9	2.1 4 1.3	-0.4 ± 1.1

Statistical significance: * for $p \le 0.05$, ** for $p \le 0.01$

Table 1b : Unscheduled DNA Synthesis (UDS) assay with freshly isolated rat hepetocytes after 18-hours exposure to Ro 40-7592/001 (Experiment 23H90/1)

Test Chemical		1	Ī	Grain Cou	nts / Cell	
rest Chemical	Dose ug/ml	No.Cell Analysed	> 5 (2)	Heclest Hean # \$D	Cytoplasmic Nean ± SD	Het Muclear Hean ± SD
Negative control: DHSO	0.0	75	0	1.0 ± 1.0	1.2 ± 0.8	-0.2 ± 1.1
Ro 40-7592/001	1.0	90	2	1.5 + 1.4	1.8 ± 1.2	-0.3 ± 1.2
Ro 40-7592/001	5.0	100	1	0.7 ± 1.1	0.9 ± 0.9	-0.1 ± 0.9
Reference substance: ZAAF	0.1	80	63	17.5 ± 4.4	2.9 ± 1.9	4.6 ± 4.0

Statistical significance: * for p ≤ 0.05 , ** for p ≤ 0.01

Table 1c : Unscheduled DNA Synthesis (UDS) assay with Treshly isolated cut hepatocytes after 18-hours exposure to Ro 40-7592/001 (Experiment 23090/2)

Test Chemical		1		Grain Cou	nts / Cell	
	pg/ml	No.Cell Analysed	> 5 (2)	Muclear Mean ± SD	Cytoplasmic Heen ± SD	Het Muclear Hean ± SD
Negative control: DMSO	0.0	102	0	0.3 ± 0.6	0.5 ± 0.5	-0.1 ± 0.5
Ro 40-7592/001	0.5	101	0	0.6 ± 0.9	0.9 ± 0.7	-0.3 ± 0.9
Ro 40-7592/001	1.0	104	0	0.8+ ± 0.9	0.8 ± 0.9	-0.1 ± 0.9
Ro 40-7592/001	2.0	100	0	0.4 ± 0.7	0.4 ± 0.5	0.01 ± 0.7
Re 40-7592/001	3.0	101	0	0.5 ± 0.8	0.6 ± 0.7	-0.1 ± 0.8
Re 40-7592/001	4.0	100	0	0.94 ± 1.0	0.9 ± 0.6	0.02 ± 0.9
Re 40-7592/001	5.0	101	0	0.5 ± 0.6	0.7 ± 0.6	-0.2 ± 0.7
Reference substance : ZAAF	0.1	101	30	5.0 4 2.8	2.0 ± 1.2	

Statistical significance: * for $p \le 0.05$, ** for $p \le 0.01$

La Pussible Cor

Cell viability at concentrations up to 5 μ g/ml was 74-90%. The next higher test concentration of 10 μ g/ml was toxic and resulted in complete loss of viability (Tables 2a-c).

Table 2a : Viability of rat hepatocytes after 18 hours exposure to Ro 40-7592/001 (Exp.23M90/0)

Test Chemical	Dose #g/ml	Cell Viability	Relative Viability
Megative control	0.0	97	100
Ro 40-7592	1.0	97	100
Bo 40-7592	5.0	90	93
20 40-7592	10.0	No viable cel	ls available
Ro 40-7592	25.0	Mo viable ce	ls available
No 40-7592	50.0	No viable cei	
Bo 40-7592 .	75.0	No viable cel	
Ro 40-7592	100.0	No viable ce	ls available
Reference: 2AAP	0.1	89	92

As measured by the method of in situ dye exclusion

Table 2b : Viability of rat hepatocytes after 18 hours exposure to Ro 40-7592/001 (Exp.23M90/1)

Test Chemical	Dose pg/ml	Cell Viebility'	Relative Viability
Megative control	0.0	91	100
Ro 40-7592	1.0	83	91
Ro 40-7592	5.0	771	45
Ro 40-7592	10.0	No viable cel	ls available
Ro 40-7592	25.0	No viable ce	
Ro 40-7592	50.0	No viable cel	ls available
Ro 40-7592	75.0	No viable cel	-
Ro 40-7592	100.0	No viable cei	
Reference: 2AAF	0.1	87	96

l As measured by the method of in situ dye exclusion Horphology of many cells had changed at this dose level

Table 2c : Viability of rat hepatocytes after 18 hours exposure to No 40-7592/001 (Exp.23M90/2)

Test Chemical	Dose #9/ml	Cell Viability'	Relative Viability
Megative control	0.0	85	100
Ro 40-7592	0.5	84	99
Ro 40-7592	1.0	75	88
Ro 40-7592	2.0	83	98
Ro 40-7592	3.0	84	99
Ro 40-7592	4.0	831	98
Ro 40-7592	5.0	742	87
Reference: 2AAP	0.1	851	100

As measured by the method of in situ dye exclusion cell morphology had changed slightly at this dose level

C.5.f. Chromosome Analysis in Human Lymphocytes Exposed to Tolcapone In Vitro

Research Report #:

B-154,840

Sponsor Volume:

51

Summary:

Cultures of human lymphocytes were exposed to tolcapone in the presence and absence of S9 metabolizing fractions. Chromosomal damage was not detected under any test condition.

This assay did not meet the OECD guidelines as only two analyzable concentrations were used.

Methods:

Drug Concentrations and Exposures:

Batch G PUL 493 089

Without S9 activation:

100 - 400 μg/ml;

3 hr exposure

 $5 - 40 \mu g/ml$;

24 hr exposure

 $5 - 30 \mu g/ml$;

46 hr exposure

With S9 activation:

 $50 - 400 \,\mu g/ml$:

3 hr exposure

Positive Controls/vehicles:

Without S9 activation:

Bleomycin (5 - 50 µg/ml) in water

With S9 activation:

Cyclophosphamide (20 - 30 µg/ml) in water

Test System:

The following is the reviewer's interpretation of a rather confusing description of the experimental methods. It was not clear if or when PHA was added to "long-term" treatment cultures without methodic activation. The use of the terms "incubation" in the text and "recovery" in the tables, and the length of these incubations or recoveries were also difficult to decipher. Thus, it is possible that some discrepancies may exist between the description below and the actual methods.

Microcultures of whole human blood were prepared and stimulate to divide by addition of phytohemagglutinin. After a 24 hr incubation, cells were harvested and resuspended in medium containing different dilutions of tolcapone or the control compounds (in triplicate). For the short-term exposure experiments, the cells were incubated with tolcapone (or controls) with or without S9 fraction for 3 hrs, followed by a change of medium containing bromodeoxyuridine and PHA. Incubations were continued for 21 or 43 hr (24 or 46 hr recovery). For the long-term drug exposures, which were not carried out with S9 activation, the bromodeoxyuridine and PHA (see above) was added together with the test substance. Incubations were continued for 24 or 46 hr.

BLE COF.

At 3 hr before harvest, colchicine was added to the cultures to arrest cells in metaphase. After harvest, the cells were fixed in methanol/acetic acid, suspended in fixative, and mounted on slides. Four slides per culture were prepared without BrdU and 2 slides per culture were prepared with BrdU. On the following day, cells without BrdU were incubated with 1N HCl, and cells with BrdU were incubated with bis-benzimide. Slides were then stained with Giemsa, and analyzed for metaphases resulting from the second mitosis after treatment.

The test concentration range was established by determining the mitotic index in cultures (percent of cells in mitosis).

Metabolizing System:

S9 fraction prepared from Arochlor-induced rats (500 mg/kg).

Statistics:

Fisher's Exact test (p<0.05; two-tailed test)

Results:

Short-term (3 hr) incubations of cultured human lymphocytes with 400 $\mu g/ml$ tolcapone in the absence (Table 1) or presence of S9 (Table 2) resulted in cytotoxicity. The two lower concentrations (100, 200 $\mu g/ml$) had no effect on mitotic index or chromosomal abberations.

12. Summary tables

Table 1: Rate of chromosome damage, index of cells with structural aberrations (S-cells), with unspecific chromosome changes (U-cells) and of cells in mitosis (N-I) in cultured human lymphocytes treated for 3 h without metabolic activation (recovery 24 h).

Tost Substance	Deae	Analyzed	M-I		-Cells	CRI		ACE	Re	DIC	ATTP	•	U	Cells	QAP:
	pq/e1	Cells			•								×	٠	
618 N 99/1												-			
Mogative centrel	•	100	4.6	•	0.00										
Solvent centrel	•	100	3.5	1				6.010					2	2.00	9.024
Concurrent negativ				_				4.014					•	0.00	0.010
controls	•	300	4.1	1	0.50			0.003					2	1.00	0.015
No 48-7392/661	100	200	4.6	1	0.50					0.005					
•	200	200	8.4	1				0.005		T. 503			6	3.00	0.030
•	400	•		_	-1.50			V.443					,	1.50	0.020
Positive control:															
lloonycin	50	100	2.9	29	29.00**	0.150	0.010	0.130		0.110	0.030				
								71450			T.430	ı		10.00	0.340

^{*} Significant at the 5 % level

^{**} Significant at the 1 % level

BEST POSSIBLE OF

Table 2: Date of chromosome desape, index of calls with etrustural abscrations (5-calls), with unspecific chromosome changes (8-calls) and of calls in mitosis (N-2) in cultured human lymphosytem treated for 3 h with metabolic activation (recovery 20 h).

Test Substance	Dese	Analysed	M-I		-Colls	CIRI		ACE	R.	DEC	ATTP	P	D- C	olla	975
	M/ml	Colla	٠		•				_				H	•	
						-					•				
910 M 90/1								•							
Mogative control	•	100	4.6	•	0.00								2	2.00	0.020
Solvent Control	•	100	3.5	1	1.00			0.010						0.00	0.010
S-9 control	•	100	5.4	1	2.00		. 0.010	0.010						1.00	0.010
Concurrent negative															•••••
centrols	•	300	4.5	3	1.00		0.003	0.007					3	1.00	0.013
No 40-7392/001	100	200	5.2	3	1.50	0.005		0.005		0.005	0.005		1	0.50	0.005
•	200	200	3.5	1	0.50			0.003					3	1.50	0.015
•	400	•	•.•								•				
Positive control:															
Cyclophosphasid	20	100	4.2	11	11.00**	0.026		0.100		0.010			1	1.00	0.030
	30	100	0.5	16	16.00**	0.020	0.010	0.110			0.030		-	6.00**	0.120

^{*} Significant at the 5 % level

^{**} Significant at the i % level

BEST POSSIBLE CO

Longer term incubations (24 or 46 hrs) with tolcapone in the absence of S9 caused a marked cytoxicity at concentrations of 50 and 30 μ g/ml (Tables 3 and 4). The two lower concentrations had no effect on mitotic index or chromosomal abberations.

Table 3: Nate of chromocome demoge, index of colls with structural observations (S-colls), with unspecific chromocome changes (W-colls) and of colls in mitoris (M-I) in cultured human lymphocytes treated for 14 h without metabolic activation.

Post Substance	Dose	Analyzed	12-61		-Cs11s	CIMI	EX	ACE	1,	BEC	ATTE	,		Colle	932
	hd/ar	Colls	•		•	_			•					•	-
118 H 90/4															
logative control	•	200	9.7	1	0.50			0.003					2	1.00	0.610
lelvent control	•	200	8.6	1	0.50						0.005		_		
Concurrent megativ											4.445		3	1.50	0.015
entrels	•	400	9.2	2	0.50			0.803			0.003		5	1.25	0.013
• 40-7592/801	10	200	6.4	1	0.50			0.005					_		
•	25	200	4.9	3			0.005	0.019					1	0.50	0.003
•	50	200 .	1.4	- 1			4.003	A-414					5	2.50	0.023
	•	200 .	4.7	•	4.54					0.005			6	3.00	0.030
esitive control:															
l oosyc in	5	100	5.4	27	27.00**	0.200	0.028	0.190		0.030	0.010		3	13.00**	8.290
											******	•		23,46	

[.] Significant at the 5 % level

Table 4: Nate of chromocome demage, index of cells with structural aberrations (S-cells), with unspecific chromocome changes (U-cells) and of cells in niteels (N-I) in cultured human lyaphocytes treated for 46 h without metabelic activation.

Tost Substance	Dese	Analyzed	94-I		-Celle	CIMI	EX	ACE	R _e	DEC	ATTP	7		Colls	GAPS
	pg/pl	Cells	•		•							MA	NÎ.	•	
111 H 10/2 .															
Megative control	•	100	8.5	1	1.00	0.010							1	1.00	0.010
Solvent control	•	100	5.4	2	2.00			0.026						6.00	0.060
Concurrent mogativ													•		v
centrols	•	200	7.0	3	1.50	0.005		0.010					,	3.50	0.035
Ro 40-7592/001	5	200	4.9	3	1.50	0.005		9.005	•	0.005	0.005		3	1.50	0.015
•	10	200	5.2	1	0.50			8.005					2	1.00	0.010
•	30	136	0.5	6	4.41	0.015	9.967	D.015			0.067		4		9.844
Positive control:															
Bloomycin	5	100 -	2.9	42	42.00**	0.220	0.030	0.650	0.010	0.060		4	19	19.00**	0.810
												11			

^{*} Significant at the 5 % level

^{**} Significant at the 1 % level

^{**} Significant at the 1 % level

BEST POSSIBLE CO

To test for possible longer term effects of metabolic activation, cultures were exposed to S9 for 3 hr then allowed to recover for 46 or 24 hr. In these experiments, cytotoxicity or chromosomal abberations were not evident at concentrations up to 300 or 400 μ g/ml (Tables 5 and 6).

Table 5: Rate of chromosome demage, index of colls with structural aborrations (S-colls), with unspecific chromosome shanges (U-colls) and of colls in mitosis (M-E) in cultured human lymphocytes treated for 3 h with notabelic activation (recovery 46 h).

Tost Substance	Dese	inalysed	24-E		Cells	CIRI	EX	ACE	A _e	DEC	ATTP	P	5	celle	Q.
	pg/el	Colls	•	-	•								,	•	
918 H 99/2															
Negative control	•	100	8.5	1	1.00	0.010							1	1.00	0.016
Solvent Control	•	106	5.4	2	2.00			0.020					-	6.00	0.066
S-9 control	•	100	9.1	2	2.00			0.020					•	4.00	0.040
Consurrent megative													•	1.00	0.00
controls	•	300	7.7	3	1.67	0.00)		0.013				1	11	3.67	0.037
No 40-7592/001	50	200	7.4	4	2.00			0.020					3	1.50	0.020
•	150	200	10.1	4	2.00	0.005		0.025						1.00	0.010
•	300	200	6.3	4	2.00			0.020			•			3.00	0.030
Positive control:															
Cyclophesphanid	20	100	6.5	6	6.004	0.010		0.046			0.010		2	2.00	0.020
•	30	100	5.4	•	9.00**			0.100					_	7.00	0.100
													-		

Table 6 : Rate of chromosome damage, index of cells with structural aborrations (S-cells), with unspecific chromosome changes (U-cells) and of cells in mitoels (M-I) in cultured human lymphocytes treated for 3 h with metabolic activation (recovery 24 h).

Test Substance	Dose	Analyzed	M-I		-Calls	CHL	EX	ACE	X,	DIC	ATTP	P	U-	Calls	QAP:
	#9/al	Cells			•							MA	*	•	
					•										
010 × 90/4															
Mogative control	•	200	9.7	1	0.50			0.665					2	1.00	0.01
Solvent control	•	200	1.6	1	0.50						0.005		1		0.01
Concurrent negativ													-		•
centrols	•	400	9.2	2	0.50			0.003	•		0.003		5.	- 1.25	0.01
No 40-7592/061	304	200	9.9	4	2.00	0.010		0.010		0.005			3	1.50	0.01
•	400	200	12.1	3	1.50	0.005		0.010		0.005			5	2.50	0.02
Positive control:	•														
Cyclophosphsmid	20	100	2.5	69	69.00**	0.54ô	0.300	0.310	0.010		0.610	13	15	15.00**	0.660

significant at the \$ % level

All control samples generally produced the expected results. In the experiment with 3 hr metabolic activation and a 46 hr recovery period, cyclophosphamide did not produce as dramatic an increase in number of S-phase cells as was noted with positive controls in other experiments.

It should be noted that in most of these experiments only two concentrations could be considered analyzable because of the sharp decrease in mitotic index between the intermediate and high test concentrations.

^{**} Significant at the 1 % level

C.5.g. Mutagenicity of Tolcapone in Combination with Sinemet in the ML/TK Assay

Research Report #:

B-163,208

Sponsor Volume:

51

Summary:

Mutagenic properties of tolcapone in combination with Sinemet were evaluated in the mouse lymphoma/thymidine kinase gene mutation assay. Positive effects, particularly elevations in the frequency of small colony formation were identified, and attributed to tolcapone.

In the absence of S9, a small but statistically significant increase (1.6X) in total colony formation at a combined drug concentration of 200 μ g/ml was reported by the sponsor (Table 4.c.). A more marked, dose-related increase (3.2X at 200 μ g/ml) in small colony formation was not commented upon by the sponsor. When the compounds were tested separately, no statistically significant effects on total colony formation were detected by the sponsor. However, the concentration of 100 μ g/ml tolcapone alone caused an approximate 2-fold increase in the appearance of small colonies, which also was not commented on by the sponsor. These data suggest that tolcapone is weakly mutagenic in the absence of S9 activation in the ML/TK assay. The mutagenic effects of tolcapone are primarily manifested as a selective increase the formation of small colonies.

In the presence of S9, clear, reproducible dose-related increases in mutant frequencies resulted from treatment of the cultures with the combination of tolcapone and Sinemet. In the main experiment (Table 4.d.), the combined drug concentration of 250 μ g/ml caused a 2.2-fold increase in total colony formation. Again more substantial elevations in the appearance of small colonies was noted (4-5X). Combined drug concentrations as low as 90 μ g/ml produced a 3-3.6 fold increase in small colony formation when relative cell viability was 70-74%. Analysis of the drugs individually suggested that the mutagenicity was due to tolcapone. The source of S9 fraction did not affect the mutagenic properties of tolcapone in this assay, as relatively similar results were obtained with S9 fractions from naive rats, or rats induced with phenobarbital/ β -naphthaflavone or Arochlor.

The sponsor concludes that the toxicological relevance of the mutagenicity findings are doubtful since the increase in mutant frequency occurred only at toxic concentrations and the effect was marginal. The bases for this conclusion are unclear since the sponsor did not clearly define the level of cell viability that is considered toxic in their laboratory, or the elevations of mutant frequency that are considered toxicologically relevant. Moreover, the sponsor's analyses appear to consider only total colony formation; tolcapone appeared to have more significant effects (both biologically and statistically) on small colony formation (NOTE: statistically significant effects are identified only in the text and are not marked as such in the tables). With these considerations in mind, the aforementioned 3-3.6 fold increase in small colony formation at a combined drug concentration of 90 µg/ml when cell viability was 70-74% contradicts the sponsor's contention that increases in mutant frequency only occur at toxic concentrations. In addition, the effect was clearly dose-related in this experiment (4-5X increases in small colony formation at 250 µg/ml), and the relative cell survival rates in these experiments were higher than those considered cytotoxic by established guidelines (OECD, 10%). Thus, the sponsor's contention that the findings are "equivocal" and their "toxicological relevance... is doubtful" is disputable. In the opinion of the reviewer, the data suggest that tolcapone is weakly mutagenic in the absence of metabolic activation, and mutagenic in the presence metabolic activation in the ML/TK assay.

Methods:

Drug Concentrations:

Tolcapone (Lot 40802440) was applied combination with Sinemet (4:1 ratio of L-DOPA and carbidopa) in a 1:1 ratio to achieve the final concentrations as follows:

a. without metabolic activation

Protocol No.: 090M95/3, 090M95/5 and 090M95/7

Substance	Su	bstance Concentrat [μg/ml]	ion
	Range finder 090M95/3	Experiment 1 090M95/5	Experiment 2 090M95/7
Negative control: RPMI-5 Negative control: DMSO Tolcapone/Sinemet Tolcapone/Sinemet Tolcapone/Sinemet Tolcapone/Sinemet Tolcapone/Sinemet Tolcapone/Sinemet Tolcapone/Sinemet Tolcapone/Sinemet Sinemet Sinemet Sinemet	0 5 10 50 100 150 300	0 0 6.25 12.5 25 50 100 150	0 0 40 40 70 70 120 120 200 200 100
Tolcapone Tolcapone Reference substance: NOO		0.1	100 100 100 0.1

b. with metabolic activation

Protocol No.: 090M95/2, 090M95/4 and 090M95/6

·Substance	Su	bstance Concentrat [μg/ml]	tion
	Range finder 090M95/2	Experiment 1 090M95/4	Experiment 2 090M95/6
Negative control: RPMI-5	0	0	0
Negative control: DMSO		0	Ŏ
Tolcapone/Sinemet	5	12.5	50
Tolcapone/Sinemet	10	25	50
Tolcapone/Sinemet	50	50	90
Tolcapone/Sinemet	100	100	90
Tolcapone/Sinemet	200	200	150
Tolcapone/Sinemet	300	300	150
Tolcapone/Sinemet	500	300	250
Tolcapone/Sinemet	1000		250 250
Sinemet		50	
Sinemet		150	125
Tolcapone		130	125
Tolcapone			125
Reference substance: BP		_	125
iverence substance: BP		2	2 -

In a follow-up study assessing the mutagenic effects of tolcapone alone with metabolic activation, the following concentrations were applied:

c. Tolcapone with metabolic activation (phenobarbital/ β -naphthoflavone induced, aroclor induced, uninduced)

Protocol No.: 090M95/9, 090M95/10, 090M95/11 and 090M95/12

Substance		_ ~	oncentration /ml]	
	Experiment 3 090M95/9	Range finder 090M95/10	Experiment 4 090M95/11	Experiment 5 090M95/12
Negative control: DMSO Negative control: DMSO	0	0	0	0
Tolcapone .	50	12.5	15	15
Tolcapone	75	25	20	20
Tolcapone	100	50	30	30
Tolcapone	125	100	50	50
Tolcapone			75	75
Reference substance: BP	2	*****	2	2

Positive Controls:

without activation

4-nitroquinoline-1-oxide

with activation

benzo(a)pyrene

Metabolic Activation:

Initial experiments on the drug combination used microsomes from phenobarbital/β-naphthaflavone-induced rats. In follow-up studies of tolcapone alone, microsomes from Arochlor-induced and uninduced rats were also used.

Experimental Procedure:

Cells (10⁷) were seeded in culture flasks and incubated for 3 days prior to the experiment. In the main experiments, cultures were run in duplicate. Single cultures were used in the preliminary experiments and tests of different S9 fractions. Cultures were incubated with test compounds in the presence or absence of S9 activation for 3 hrs, washed and resuspended, and transferred to new flasks for a two-day expression period. Cells were then transferred to 96-well titer plates and exposed to 5-trifluorothymidine. The incubation period was approximately 10 days until scorable for large and small colonies.

Cytotoxicity was determined by visualization of colony-forming units at day 2 (end of expression period) on microtiter plates prepared from cultures treated with drugs on day 0.

Statistics

Mutant frequencies of test and control groups were evaluated by Dunnett's test (assuming one-way ANOVA) after logarithmic transformation. Linear trends were evaluated by Chi-Square analysis.

Results

BEST POSSIBLE CO

Cytotoxicity Testing:

The combination of tolcapone/Sinemet was cytotoxic (ca. 80% decrease in cell viability) at concentrations of 150 μ g/ml in the absence of S9, and 200 μ g/ml in the presence of S9.

Table 3.a: Experiment 090M95/3

Cytotoxicity in the range-finder experiment: cell counts and viability directly after a 3 h treatment with Tolcapone/Sinemet without metabolic activation

Test article	Case	∞_1	ROC	EW	PE	RS
	(mg/mi)		(%)		(%)	(%)
RPMI	0	5.5 x 10°	100	21	95	100
Tolcapone/Sinemet	5	5.5 x 10°	100	25	84	88
Tolcapone/Sinemet	10	5.5 x 10°	100	22	92	97
Tolcapone/Sinemet	50	4.6 x 10 ⁶	84	25	84	88
Talcapone/Sinemet	100	4.5 x 10 ⁶	82	ය	26	27
Tolcapone/Sinemet	150	4.5 x 10°	82	69	21	22
Tolcapone/Sinemet	300	23 x 10°	42	96	0	0

¹ 5 x 10⁴ cells seeded per <u>flask</u>

Table 3.b : Experiment 090M95/2

Cytotoxicity in the range-finder experiment : cell counts and viability directly after a 3 h treatment with Tolcapone/Sinemet with metabolic activation.

Test article	Conc. (ng/ml)	œ₁	RCC (%)	EW	PE (%)	RS (%)
RPMI	0	4.4 x 10 ⁶	100	23	89	100
Tolcapone/Sinemet	5	5.5 x 10°	125	27	79	89
Tolcapone/Sinemet	10	5.4 x 10 ⁶	123	25	84	94
Tolcapone/Sinemet	50	5.1 x 10°	116	25	84	94
Tolcapone/Sinemet	100	5.1 x 10 ⁶	116	44	49	55
Tolcapone/Sinemet	200	3.8 x 10 ⁶	86	71	19	21
Tolcapone/Sincenet	300	2.1 x 10°	48	70	20	22
Tolcapone/Sinemet	500	0.5 x 10°	11	96	0	0
Tolcapone/Sinemet	1000	0.5 x 10°	11	96	.0	o

¹ 5 x 10⁶ cells seeded per flask

The range-finder experiments 090M95/1 and 090M95/0 were not included in the report because the plating efficiency of the negative control was only 50 %. The data has been taken as basis for the dose selection of these repeat experiments 090M95/3 and /2.

POSSIBLE

Mutagenicity testing:

Without S9 Activation: The sponsor reports a "slight, but statistically significant" increase in mutant frequency in cultures treated with $200 \mu g/ml$ of the tolcapone/Sinemet combination (Table 4.c). This statement is based on an approximate 1.6-fold increase in total colony number. Inspection of the data on the formation of small colonies, which presumably reflects a greater degree of chromosomal damage, reveals a 2.7-fold increase in mutant frequency. This is not indicated as statistically significant, but the magnitude of effect appears more dramatic than the marginal increase in total colony number.

Table 4.c : Experiment 090M95/7

Raw plate counts, viability, TK mutants and mutation frequency of mouse lymphoma tk^+/tk^- cells after 3 h exposure to Tolcapone/Sinemet without metabolic activation.

	1 1	,	Flability	: Survivo	ı'ı'	Vieb	ility : Bu	viver II ¹	1	7	X Muta	mts ¹			MF	
Test article	Conc. µg/mi	EW	EW	PE (%)	RS (%)	EW	EW	PE (%)	EW	EW	EW	EW	EW	colony	colony	cok
RPMI	0	36	33	68	100	32	31	71	74	70.	72	73	72	201		
		29	l	1	Į	30			1.107						19	
				<u> </u>	<u> </u>				-1-							
DMSO		33	32	70	100	32	32	70	80	80	75	72	77	180		Г
	ļ	30		J	l	31]			o terri					144	L
Tolcapone/Sinemet	40	34	35	63	93	29	28	82	73	74	78			400		
	~	36			"	23	~	OZ.	240	/4	/	72	74	157	10.2	
	İi				ļ		I .									
Tolcapone/Sinemet	40	39	36	61	90	35	31	72	79	76	80	79	79	140		
		33				26			144.			100	14-1		1.15	
Tolcapone/Sinemet	70	57	57	33	49	28	33	67	75		711		- ;			
i orcebouer on retiret	"	56	37	33		38	33	97		79	71	79	76	176		
	<u> </u>					-									117(1)	
Tolcapone/Sinemet	70	44	51	40	59	31	30	74	72	71	76	86	72	200		
		58				28	1		31.5		1,45	9.4	113		(12.1	
Tolcapone/Sinemet	120		-68	22								5	40			
i orcaponevainemet	120	69 66	06	22	32	29 31	30	73	73	76	78	72	75	174		
		ا ۳				31						1964 a) 1964 a)			(en	
Tolcapone/Sinemet	120	64	66	25	37	32	34	66	71	76	71	75	73	205		1
	1	65				35	- I			Į,				200	150,	
																, F.
Tolcapone/Sinemet	200	81	82	10	15	37	39	57	74	69	74	66	71	264		
ł		82	Į			40	i		1.435]	. Ly:	
Tolcapone/Sinemet	200	89	86	7	10	41	38	58	80	79	82	76	79	165		
		83		i l	"	35	_	~			94	70	79	100	46	
		<u> </u>	1				1						edes	f		759
NQO	0.1	55	51	40	67	41	40	55	59	69	69	60	62	402		
		47			l	39		H	同はと中	1.67		12.	(387) (51)	- 1	(2140 J	dg)

1.6 cells seeded per well

continued on next page

² 2 x10⁹ cells seeded per wall ³ per 10⁶ visible cells

THE PARKING TO

Table 4.c: Experiment 090M95/7

Raw plate counts, viability, TK mutants and mutation frequency of mouse lymphoma tk * /tk * cells after 3 h exposure to Tolcapone/Sinemet without metabolic activation.

T 441-4-	1_ 1			Survivo			My : Bur			. 1	K Mute	nte ²			MF	
Test article	Conc. µg/mi	EW	EW	PE (%)	RS (%)	EW	EW	PE (%)	EW	EW	EW	EW	EW	cotony	colony	colon
RPMI	0	36	33	68	100	32	31	71	74	70	72	73	72	201	-	
	1 1	·29				30			17	1.10			14.		9:	
01400	-								1.1.							4.11
DMSO	0	33	32	70	100	32	32	70	80	80	76	72	77	100		
	1 1	30	1			31							1424		(4)4)	
Tolcapone	100	59	63	07					- 1		- 6-t					R_{i}^{r+1}
Ocepoide	1 '00	68	63	27	40	38	34	65	85	73	74	80	78	160		
	1 1	98				30			1 75 1		(10,00				Pkt	
Tolcapone	100	62	60	30	44	35	32	-	11/11							
	""	57	ا سا	30	77	29	32	69	67	79	- 00	78	71	217		
	1 1	٠.				2.0	l					- 1			-(05)	
Sinemet	100	42	39	57	64	34	30	73	70	72						5111
	'''	35		•	ا ۲۰	26	•	/5			72	73	79	186		
	1		i	i	j	~~			. 191		1				1,81	
Sinemet	100	39	45	47	69	29	26	83	73	79	76	78	76			724
		51				22		~				/•		130		
							- 1						eriet.		: (/	
NQO	0.1	55	51	40	57	41	40	55	59	50	60	60	62	402		23/10/2
	1 1	47	1	I	ŀ	39			7.2	127	.121	37.5			1.[0,0]	
·														ľ		4000

^{1.8} cells seeded per well

^{* 2} x10* cells seeded per wall

⁸ per 10⁶ viable cells

With S9 Activation: A concentration-related increase in mutant frequency was evident in cells treated with the combination of tolcapone and Sinemet in two different experiments (Tables 4b, 4d). The magnitude of increase was most evident in small colony formation. Cell viability at the concentration of 250 µg/ml was 26-36%. Experiments with the individual drugs indicated that the effect of the combination was due to tolcapone. The positive controls produced the expected results.

Table 4.b: Experiment 090M95/4

Raw plate counts, viability, TK mutants and mutation frequency of mouse lymphoma sk*/sk*cells after 3 h exposure to Tolcapone/Sinemet with metabolic activation.

	1_	į		: Burvive	ı.i.	Vist	illy : Su	retror II ⁴			K Mute			_		
Test article	Conc. µg/ml		EW	PE (%)	RS (%)	EW		PE (%)	EW		EW	EW	EW	colony	1	 œ
RPMI	0	24 38	31	71	100	24	27	79	76	80	74	68	76	160	amel	*
DMSO	6	23	24	87	L		<u> </u>				3		1(4)		0.1	
	•	25	-	"	100	32 24	28	77	78	77	73	81	77	147		
Tolcapone/Sinemet	12.50	31	28	63	117	27	29	75	79	74	2.4		3 27 200		14424	١,
		20	1			31					83		80	122	14.7	
Tolcapone/Sinemet	25	24 29	27	80	113	30	28	77	84	73	79	79	79	129		
Tolcapone/Sinemet	50	33				26		<u>. </u>	i Ujit		10	je:	(181)	'	217	
		29	31	71	100	20 26	23	89	76	76	82	80	79	113		\ . \{.
Tolcapone/Sinemet	100	46	46	46	65	21	23	91	1 4			-2	11:1		1.97	. 16.
		46				24	~	•,	02 144	80	78	82 24	81 24	97		
Tolcapone/Sinemet	200	67 72	70	20	28	32	31	72	77	76	78	70	78	149		高
Tolcapone/Sinemet						29	- 1		1/	(A-)	K	7:	11/01	, , ,	12/5	
rocapone/Sinemet	300	88	89	5	7	33 43	30	58	71	76	79	77	78	205		{ ₁₂ .
Sinemet	50	36	38	59	83	32	27		1000円		. (佐) 月 3g	600	985 1 12 t		erkj	1.6
		39		-	~	22	21	79	77	78	80	79	76	133		
Sinemet	150	29 26	28	78	110	24	26	83	75		71	69	73	167		i.'
BP BP						27		ŀ	. (de). (de	121 11		1907	地	10/	· 1/4	
0	2	45 30	42	52	60	30 37	34	66	61	59	66	57 -	61	351		9.0
<u> l</u>										45			41		day.	

1.6 cells seeded per well

⁴2 ×10⁹ cells seeded per well

" per 10" viable cells

BEST POSSIBLE (

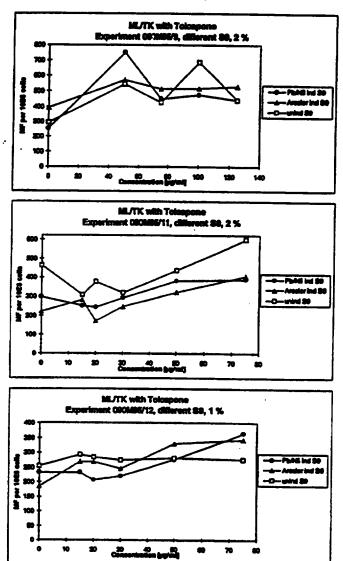
Table 4.d : Experiment 090M95/6

Raw plate counts, viability, TK mutants and mutation frequency of mouse lymphoma $tk + \hbar k$ cells after 3 h exposure to Tolcapone/Sinemet with metabolic activation.

	1_			: Burvivo	'i'	Viet	Mity : Bu	rvivor N		1	K Mute	nts ¹		T	MF ³	
Test article	Conc. µg/mi		EW	PE (%)	RS (%)	EW	EW	PE (%)	EW	EW	EW	EW	EW	colony	colony	•
PPMI	0	37	34	66	100	30	33	68	73	80.	77				arned	Ľ
		30	l			35				47		71	76	179	/ Teles	
DMSO	0	32 35	34	66	100	36	34	66	80	80	84	74	80	145		
					<u> </u>	33							14.		ia ia	
Tolcapone/Sinemet	50	29 30	30	74	112	30 30	30	73	71	70	60	60	70	219		
Tolcapone/Sinemet									1 11				14-11		14.5	
1 oreshous/smemer	50	28 26	27	70	120	26 33	31	72	70	73	74	75	73	191		
Tolcapone/Sinemet	90	51	44	49	74	37	40						12.0		100	
	-	37	. "		' '	42	40	56	8 1	80	79	78	80	170	1 (8)	
Tolcapone/Sinemet	90	44	46	46	70	36	41	54	65	84	65		1			115
	1	48		ļ	I	43			i jari.	77.1		67	70 39	289	1.41	
Tolcapone/Sinemet	150	56	61	29	44	43	42	52	80	77	80	78	79	188		
		65				40	ļ		[1] ([4]) [4]		14.	***	74/41 14/41	100	10/2	
Tolcapone/Sinemet	150	64 62	63	26	39	40 42	41	53	76	84	80	70	80	177		9.4
Tolcapone/Sinemet													Application of the Control of the Co	į	1.01	1
ocaponer Smernet	250	70 77	74	17	26	49 43	46	46	83	83	71	77	79	219		
olcapone/Sinemet	260	68	65	24	36	48	46	47				4.1			1.51	11/
		62	_		~	42	**	"	67	74 .	76	73 //	73	296	2/64	
8P	2	50	48	46	70	45	43	50	56	62	60	63	58	505	_	(44
	- 1	42		- 1	ł	41	1	i				(4) to 1	677		(.PX)	

	1.			Survivor	i,	Vlobi	illy : Bury	vivor II'		T	K Mute	nda [‡]		1.	MF3	
Test article	Conc. µg/mi	EW	EW	PE (%)	RS (%)	EW	EW	PE (%)	EW	EW	EW	EW	EW	colony	colony	colon
RPMI	0	37	34	66	100	30	33	68	73	60	77	71	75	179		
	1 1	30				35	1 1		{:[.tr]	(45)	(1) (i)	11.			1.440	ĺ
DMSO	+									/						
DMSO]	32 35	34	88	100	35	34	65	80	80	84	74	80	145		
		30				33			1. 431	149		300	iπH.		(4)	
Tolcapone	125	60	61	26	42	42	39		. "		4	<u> </u>	**.			. (1.1)
	"	63	v.	20	72	36	39	58	77	71	69	70	74	231		
	1 1	••				30				· '** :	[#1] 	72.0			140	
Tolcapone	125	66	70	20	30	44	43	50	78	71	71	70	73	280		<u>. '77'</u>
		73				42			72.1		احضنت	7,0			5 12/0/N	
																1,15,1
Sinemet	125	32	32	70	106	30	40	55	70	80	74	89	73	247		
		31			-	50	i		19		1.100	10)			1. 1	
- Cii	1 100									****						211.
Sinemet	125	33	29	75	114	34	36	68	81	66	71	78	74	225		
	1 1	25	l		ı	42	Į		142	281 3	184				. i-J-y	
BP	2 -	50	46	46	70	45	43						1.50			1,5
 -	-	42	70	70	"	41	~3	50	56	62	50	63	58 _	505		
	1		ı	ſ	l	7'		1		. 4.5 4			1	_	1.1444.1	Spiest

^{1 1.6} cells seeded per well


⁶ 2 x10⁶ cells seeded per well

⁹ per 10⁶ viable cells

The source of S9 fractions had no influence on mutant frequency as tolcapone had comparable effects with both types of induced and uninduced microsome fractions (Figure 3).

PEST POSSIBLE OF

Figure 3: Mutant frequencies after 3 h exposure of Tolcapone with differently induced metabolic activation systems - Experiments 090M95/9, /11 and /12

C.4.h. In vivo Mouse Micronucleus Test

Research Report #:

B-153,599

Sponsor Volume:

52

Summary:

In this in vivo mutagenicity study, single doses of tolcapone (300 mg/kg, p.o.) did not significantly increase the number of micronucleated polychromatic erythrocytes in the femoral bone marrow of mice at 24-72 hrs after dosing. The positive control procarbazine produced the expected result.

No description of clinical signs of toxicity or lethality was provided, so the adequacy of the dosage levels could not be determined. In addition, the number of polychromatic erythrocytes scored for the presence of micronuclei was lower than that recommended in the 1994 OECD guidelines (1000 vs recommended 2000). Thus, the acceptability of this assay for assessing potential genotoxic effects of tolcapone is questionable.

Methods:

Dosage/Route:

Tolcapone (Lot G PUL 493 089) was administered by gavage at doses of 150 and

300 mg/kg. Drug was prepared in SSV to deliver 10 ml/kg.

The high dose was selected on the basis of a preliminary toxicity study in which

sublethal effects occurred at 312 mg/kg.

Positive Control:

Procarbazine HCl, 50 mg/kg, in PBS

(this agent is not on the OECD list of

recommended positive controls).

Animals:

Fu-Moro albino mice, 37-42 g

15 males and 15 females were used in the negative control and high dose groups. Five males and 5 females were used for the low dose group, and 5 males were used for the positive control group.

Note: Failure to comply with OECD guidelines stating that 3 dose levels, or a single dose

level of 2000 mg/kg/day should be employed.

Sample Collection and Analysis:

Five animals per group were sacrificed at 24, 48 and 72 hr post-treatment (in groups that contained only 5 animals, all were sacrifieed at 24 hrs). Femoral marrow smears were fixed on a slide (2 per animal) and stained with May-Grunwald-Giemsa. The number of polychromatic erythrocytes scored for the presence of micronuclei 1000 per animal.

Note: OECD guidelines state that 2000 PCEs should be scored.

BEST POSSIBLE (

Comparisons were made by the Mann-Whitney U-test.

Results:

Single doses of 150 or 300 mg/kg tolcapone to male and female mice did not significantly increase the number of micronucleated polychromatic erythrocytes (MN-PCEs) relative to control levels at 24 hrs after treatement (Table 1a). The high test dose also did not increase the number of MN-PCEs at 48 or 72 hrs (Tables 1b,c). The ratio of polychromatic to normochromatic erythrocytes was similar in control and treated animals. The positive control procarbazine produced the expected increase in MN-PCEs (Table 2).

These data suggest that tolcapone is not genotoxic in the *in vivo* mouse micronucleus assay. Although the sponsor states that the high dose was selected based on observations in an acute toxicity study, no description of clinical signs of toxicity in the present study were provided. This raises the question of whether the doses used in this study were adequate. In addition, the number of scored PCEs was lower than the recommended number in the OECD guidelsines (2000/animal).

Table lq: Micronucleus Test with Fuellinsdorf Albino Mice (SPF)

Treated with RO 40~7592/801. Hode of application: ORAL

Sampling time: 24 h

Single Dose	Ani	mal		ICE th MN	Ratio PCE/NCE	Median		CE h MN	Median +
mg/kg	No.	Sex	No.	x			No.	×	Significance Levels
	111 112 113 114 115		2 2 2 5 0	0.23 0.18 0.19 0.47 0.00	1.13 0.88 0.93 0.93 1.17		2 2 5 2 7	0.20 0.20 0.50 0.50 0.70	
	117 118 119 1110 1111	****	3 0 1 1	0.38 0.00 0.15 0.10 0.16	1.28 1.80 1.52 0.98 1.62	1.06	1 3 3 2	0.10 0.10 0.30 0.30 0.20	0.20
150	411 412 413 414 415	20 20 20 21 21	4 0 1 3 0	0.35 0.00 0.10 0.21 0.00	0.89 1.22 1.03 0.71 1.25		55604	0.50 0.50 0.60 0.00	
	417 418 419 4110 4111	* * * * * * * * * * * * * * * * * * * *	1 3 2 0 2	0.08 0.26 0.27 0.00 0.20	0.85 0.87 1.37 0.99 0.98	0.98	14410	0.10 0.40 0.40 0.10	0.40 n.s.
300	511 512 513 514 515	m m n	2 3 1 0 2	0.13 0.27 0.12 0.00 0.21	0.66 0.89 1.17 1.98 1.06		6 4 6 1	0.60 0.40 0.60 0.10 0.10	
	517 518 519 5110 5111	++++	2 0 3 1 2	0.24 0.00 0.53 0.09 0.23	1.21 1.12 1.77 0.95 1.15	1.14	2 2 4 3 3	0.20 0.20 0.40 0.30 0.30	0.30 n.s.

Experiment Number: 62-M-89

No. of PCE scored per snimal: 1000

n.s. = no significance

x for P =< 0.05 xx for P =< 0.01

Trend : (+) increasing / (-) decreasing

Single Dose	. Ani	imal		NCE th MN	Ratio PCE/NCE	Median		PCE th MN	Hedian +
mg/kg	No.	5ex	No.	×			No.	×	Significance Levels
0	121 122 123 124 125 127 128 129 1210	mmam fffff	22001	0.19 0.00 0.00 0.10 0.00 0.13 0.28 0.11	0.96 0.68 1.11 0.95 0.98 1.07 1.28 1.38 1.07	1.07	78342 31223	0.70 9.80 0.30 0.40 0.20 0.10 0.20 0.20	0.30
300	521 522 523 524 525 527 528 529 5210 5211		00123	0.00 0.00 0.15 0.34 0.13 0.40 0.12 0.47 0.13	1.28 1.87 1.46 1.72 0.43 1.32 1.16 1.17 1.25	1.30	74213 53233	0.70 0.40 0.20 0.10 0.30 0.30 0.30 0.30	0.30 n.s.

Tab. 1b. 48hr

Single Dose	Ani	mal		ICE Lh MN	Ratio PCE/NCE	Median		CE h MN	Median
mg/kg	No.	Sex	No.	×			Ho.	×	Significance Levels
o	131 132 133 134 135		1 0 1	0.12 0.15 0.00 0.11 0.12	1.22 1.48 1.44 1.08	1.19	2 5 8 3 7	0.20 0.50 0.80 0.30 0.70	
	137 138 139 1310 1311	* * * *	1 4 1 0 1	0.14 0.29 0.14 0.00 8.11	1.40 0.72 1.40 1.03 1.13	1.17	4 4 2 3 1	0.40 0.40 0.20 0.30 0.10	0.35
300	531 532 533 534 535		3 1 5 3 5	0.35 0.08 0.52 0.19 0.58	1.16 0.78 1.05 0.63 1.15		0 2 3 2 4	0.00 0.20 0.30 0.20 0.40	
	537 538 539 5310 5311	f f f f	2 0 4 0 1	0.14 0.00 0.40 0.00 0.14	0.70 1.23 1.00 1.38 1.43	1.10	1 5 5 3 0	0.10 0.50 0.50 0.30 0.00	0.25 n.s.

Tab. 1c. 72hr

Single Dose	En A	1		NCE th MN	Ratio PCE/NCE	Median		CE th MN	Hedien +	
mg/kg	No.	Sex	No.	x	·		No.	x	Significance Levels	
0	111 112 113 114 115 117 118 119 1110 1111	**************************************	22250 30111	0.23 0.18 0.19 0.47 0.00 0.38 0.00 0.15 0.10	1.13 0.88 0.93 0.93 1.17 1.28 1.00 1.52 0.98 1.62	1.06	22527 11332	0.28 0.20 0.50 0.20 0.70 0.10 0.30 0.30	0.20	
50	611 612 613 614 615	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 3 2 1 2	0.35 0.22 0.18 0.12 0.21	0.70 0.74 0.91 1.15 1.03	0.91	36 49 68 58 39	3.60 4.90 6.80 5.80 3.90	4.90 XX(+)	

Tab 2.
positive
conhol

Experiment Number: 62-M-89
No.of PCE scored per animal: 1000

n.s. = no significance

X for P =< 0.05 XX for P =< 0.01

Trend : (+) increasing / (-) decreasing

C.4.i. In vivo Mouse Micronucleus Test with Tolcapone in Combination with Sinemet

Research Report #:

B-164,908

Sponsor Volume:

52

Summary:

Single oral doses of up to 300 mg/kg tolcapone and Sinemet, alone and in combination (total dose = 600 mg/kg), were evaluated for mutagenic effects *in vivo* in the mouse micronucleus test. No significant increases in the number of micronucleated polychromatic erythrocytes in the femoral bone marrow of mice at 24 and 48 hrs after dosing. The positive control procarbazine produced the expected result. Thus, tolcapone and Sinemet, alone and in combination, were not mutagenic in the *in vivo* mouse micronucleus assay under the conditions employed in this study.

Since tolcapone appears to be species (rat)-specific with respect to renal tumor formation, the rat may have been a more appropriate model for this *in vivo* micronucleus drug combination study. The finding that rat S9 activation tended to increase potential mutagenic effects of tolcapone in the ML/TK assay suggests the possibility that a species-specific metabolite may be involved in the genotoxic mechanism. The genotoxic activity of a rat-specific metabolite obviously would not be detected in an *in vivo* mouse assay.

Methods:

Dosage Groups:

Tolcapone (Lot G PUL 40802440) and Sinemet were prepared in SSV to be delivered by gavage according to the following scheme:

Test chemical	Dose mg/kg			Number of mice treated male female		er of mice ted for MN female
Solvent control: SSV	0	10	10	10	10	10
Tolcapone	150	10	5	5	5 .	5
(Ro 40-7592/001)	300	10	11	12	10	10
Sinemet (Ro 20-3828/000, Ro 05-4759/000, 1:4)	300	10	10	10	10	10
Toicapone/Sinemet	150	10	5	5	5	5
(Ro 40-7592/001, Ro 20-3828, Ro 05-4759/000, 5:1:4)	300	10	5	5	5	5
# # # # # # # # # # # # # # # # # # #	600	10	12	11	10	10
Positive control: Procarbazine-HCl (Ro 04-6457/001)	50	10	5		5	-

The high dose of the combination was appropriately selected as an MTD on the basis of a preliminary toxicity study in which significant lethality occurred at the next highest dosage level (800 mg/kg).

Procarbazine is not listed in OECD guidelines as an acceptable positive control.

Animals:

Fu-Moro albino mice; mean weight of males: 42.3g, females: 32.8g

Five animals per group were sacrificed at 24 and 48 hr post-treatment. In groups that contained only 5 animals, all were sacrificed at 24 hrs. Femoral marrow smears were fixed on a slide (2 per animal) and stained with May-Grunwald-Giemsa. The number of polychromatic erythrocytes scored for the presence of micronuclei was 2000 per animal.

Statistics:

Evaluations were made by the Mann-Whitney U-test.

Results:

The combination of tolcapone and Sinemet (Table 1), or single doses of tolcapone (Table 2) and Sinemet (Table 3) alone did not significantly increase the number of micronucleated polychromatic erythrocytes (MN-PCEs) relative to control levels in male and female mice at either interval (24, 48 hrs) after treatment. The ratio of polychromatic to normochromatic erythrocytes was similar in control and treated animals. The positive control procarbazine produced the expected increase in MN-PCEs. These data suggest that tolcapone, alone or in combination with Sinemet, is not genotoxic in the *in vivo* mouse micronucleus assay under the conditions of the present study.

APPEARS THIS WAY
ON ORIGINAL

Tab. 1 - Tolcapone + Sinemet BEST POSSIBLE C.

Table In : Misrorucleus Test with funllinederf Albino Nies (SPF)

Trented with TOLC./SIN. . Mode of application: ORAL

Sampling time: (4 h)

Single	4-3	-1	· ·						
Dose			Hel.	HCE th MN	Ratio PCE/NCE	Median	_i	PCE th MN	Median
≈c/kg	No.	Sex	No.	z		ĺ	No.	z	Significance Levels
•	111 112 113 114 115		35501	0.10 0.19 0.08 0.00 0.09	0.67 1.24 0.33 1.54 1.82	1.30	31425	0.15 0.05 0.20 0.10 0.25	0.10
	113	4444	20202	0.12 0.00 0.20 0.00 0.11	1.85 1.34 1.48 1.67		27 20 1	0.10 0.35 0.10 0.00 0.05	
150	沿沿	•	1 2 0	0.21 0.16 0.04 0.15 0.00	1.42 1.45 0.86 1.53 0.96		\$ 5 3 4 2	0.25 0.25 0.15 0.20 0.10	٠
	716 717 718 719 7110	***	1 2 3 0 1	0.13 0.11 0.26 0.00 0.06	2.48 1.07 1.73 1.07 1.19	1.31	NMM4N	0.10 0.15 0.15 0.20 0.10	0.15 n.s.
300	611 612 613 614 618		22422	0.07 0.10 0.19 0.12 0.17	8.74 1.00 0.97 1.24 1.78	1.52	20034	0.10 0.25 0.25 0.15 0.15	0.13 n.s.
	616 617 618 619 6110	***	0 1 2 1	0.00 0.05 0.18 0.07 0.08	1.42 1.05 1.79 1.40 1.54		3210	0.05 0.15 0.10 0.05 0.00	0.13 n.s.
400	\$11 \$12 \$15 \$14 515		*****	0.12 0.12 0.16 0.03 0.22	1.21 1.23 1.09 0.63 0.73		7 6 6 0 3	0.35 0.30 0.20 0.00 0.15	
	516 517 518 519 5110	****	2 4 1	0.13 0.13 0.24 0.06 0.04	1.28 1.34 1.21 1.27 0.72	1.21	2 2 3 1 1	0.10 0.10 0.15 0.05 0.05	0.13 n.s.

Experiment Number: 079H95/2

No.of PCE soored per animal: 2000

n.s. = no significance

for P =< 0.05 ## for P =< 0.01

Trend: (+) increasing / (-) decreasing

Table 1d : Microsuclaus Test with Fuellinedorf Albino Mice (SPF)

Treated with TOLC./SIN. . Hode of application: ORAL
Sampling time: (48 h)

Single Dose	Animal			ICE IN MN	Ratio PCE/NCE	Hedian	Mi	th HM	Median
mg/kg	No.	Sex	No.	z			No.	×	Significence Levels
0	121 122 123 124 125 126 127 128 129 1210	11111 +++++	11114 10022	0.04 0.04 0.14 0.06 0.15 0.06 0.00 0.00 0.11	1.11 1.22 2.73 1.16 0.77 1.16 1.72 0.96 1.06	1.16	25326 20241	0.10 0.25 0.15 0.10 0.30 0.10 0.00 0.10 0.20	0.10
600	521 522 523 524 525 526 527 528 529 5210	4444 18888	13340 01101	0.19 0.20 0.09 0.23 0.00 0.00 0.04 0.07 0.00	1.94 1.30 0.60 1.13 1.28 1.39 1.17 1.57	1.34	3341	0.20 0.15 0.15 0.20 0.05 0.05 0.05	0.13 n.s.

Experiment Number: 079H9S/Z

Ho.of PCE soured per animal: 2000

n.s. = no significance

* for P =< 0.05 ** for P =< 0.01

Trend : (+) increasing / (-) decreasing

Tab. 2 - Tolcapone

Table * : Hierenuclous Test with Fuellinedorf Albino Hios 15977 FOSSIBLE Z Treated with Transact

2 Treated with TOLCAPONE . Mode of application: ORAL Sampling time: 24 h

Single Dose	Ani	-1		KE H	Ratio PCE/NCE	Median		CE h MN	Hedian
mg/kg	No.	Sex	No.	z			No.	Z.	Significance Levels
0	111		3 5 0 1	0.10 0.17 0.68 0.00	0.67 1.24 0.33 1.54 1.82	1.30	3 1 4 2 5	0.15 0.05 0.20 0.10 0.25	0.10
	114 117 118 113 1110	****	2 0 3 0 2	0.12 0.00 0.20 0.00 0.11	1.25 1.56 1.36 1.66 1.07	1.30	. 2 7 2 0 1	0.10 0.35 0.10 0.00 0.05	
150	312 312 314 314 315		1 1 3 0 1	0.10 0.04 0.04 0.00 0.00	1.74 1.13 .0.43 0.86 0.69	0.92	53452	0.2\$ 0.15 0.20 0.25 0.10	
	316 317 -318 319 3110	****	0 3 1	0.00 0.00 0.15 0.04 0.07	1.04 0.76 0.97 0.88 1.41	U.72	2 4 2 1 3	0.10 0.20 0.10 0.05 0.15	0.15 n.s.
300	211 212 213 214 215		33622	0.14 0.11 0.25 0.06 0.16	0.90 0.73 0.63 0.80 1.62	0.82	41212	0.20 0.05 0.10 0.05 0.10	
٠	216 217 218 219 2110	****	0 2 7 2	0.00 0.13 0.18 0.07 0.09	0.59 1.30 0.52 0.64 0.89	V. 4 2	23411	0.10 0.15 0.20 0.05 0.05	0.10 n.s.

Experiment Number: 079195/2

No.of PCE scored per animal: 2000

n.s. = no significance

for P =< 0.05 ## for P =< 0.01

Trend: (+) increasing / (-) decreesing

Table 🗑 : Micronucleus Test with Fuellinsdorf Albino Mice (SPF)

2 Treated with TOLCAPONE . Hode of application: ORAL Sampling time: 48 h

Single Dose	Ani	— 1		EE h HN	Ratio PCE/NCE	Median	wit	CE h MN	Hedian
=g/kg	No.	Sex	No.	x			No.	z	Significance Levels
•	121 122 123 124 125 126 127 128 129 1210		11114 10022	0.04 0.04 0.14 0.06 0.15 0.06 0.00 0.00 0.11	1.11 1.22 2.73 1.16 0.77 1.16 1.72 0.96 1.04	1.16	25326 20241	0.10 0.25 0.15 0.10 0.30 0.10 0.00 0.10 0.20 0.20	0.10
300	221 222 223 224 225 225 226 227 224 227 224 227 2210	11111	35221 10222	0.20 0.35 0.16 0.09 0.03 0.06 0.00 0.11 0.13	1.31 1.40 1.62 0.92 0.61 1.11 1.94 1.13 1.35	1.22	4 10 4 3 1 0 3 2 2	0.20 0.50 0.20 0.15 0.05 0.03 0.10 0.10	0.13 n.s.

Experiment Number: 0791195/2

No.of PCE scored per animal: 2000

n.s. = no significance

for P =< 0.05 em for P =< 0.01

Trend: (+) increasing / (-) decreasing

Tab.3

Table : Micronucleus Test with Fuellinsdorf Albino Mice (SPF)

3 Treated with SIMEMET . Mode of application: ORAL
Sampling time: 24 h

Single Dose	Ani	-1		NCE th MN	Ratio PCE/NCE	Hedian	mi.	CE h MN	Hedian Significance
ag/kg	No.	Sex	No.	<u>z</u>	<u> </u>		Mo.	×	Levels
0	111 112 113 114 115		3 5 0 1	0.10 0.19 0.08 0.00 0.07	0.67 1.26 0.33 1.54 1.82	1.36	3 1 4 2 5	0.15 0.05 0.20 0.10 0.25	0.10
	116 117 118 119 110	****	20302	0.12 0.00 0.20 0.00 0.11	1.23 1.54 1.36 1.68 1.07		27201	0.10 0.35 0.10 0.00 0.05	
300	411 412 413 414 415		1021	0.04 6.00 0.11 0.03 8.04	0.88 1.60 1.12 0.63 0.78	9.98	5 4 2 2	0.25 0.25 0.20 0.10 0.10	0.13 n.s.
	416 417 418 419 4110	****	2 3 0 2	0.00 0.07 0.19 0.00 0.09	1.51 0.68 1.26 1.02 0.93	0.76	33201	0.15 0.15 0.10 0.00	0.13 n.s.

Sampling time: 48 h

Single Dose	Ani			CE th IN	Ratio PCE/NCE	Median	wit	CE D HN	Hedian
≡g/kg	No.	Sex	No.	X			Mo.	X	Significance Levels
•	121 122 123 124 125		100004	0.06 0.06 0.14 0.06 0.15	1.11 1.22 2.73 1.16 0.77		25326	0.10 0.25 0.15 0.10 0.30	
	126 127 128 129 1210	****	10022	0.06 0.00 0.00 0.11 0.14	1.16 1.72 0.98 1.06 1.43	1.16	2 0 2 4 1	0.10 0.00 0.10 0.20 0.05	0.10
300	421 422 423 424 425	2	41110	6.22 0.06 0.04 0.07 0.00	1.11 1.17 1.18 1.36 0.89		1 4 3 5	0.05 0.20 0.15 0.25 0.05	
	426 427 428 429 4210	****	31003	0.24 0.07 0.00 0.00 0.22	1.40 1.34 1.79 1.46 1.48	1.35	2 1 4 3 3	0.10 0.05 0.20 0.15 0.15	0.15 n.s.

Experiment Humber: 079195/2

n.s. = no significance

No.of PCE soured per animal: 2000

for P =< 0.05 ## for P =< 0.01

Trend : (+) increasing / (-) decreasing

Table 0 : Micronuclous Test with Fuellinedorf Albino Miss (SPF)
Trented with 80 04-6467/001. Hode of application: ORAL
Sampling time: 24 h

Single.	Ani	-1	NCE with HN		Ratio PCE/NCE	Hedian	wit	CE h HH	Hedian
ag/kg	No.	Sex	No.	X			No.	X	Significance Levels
0	111 112 113 114 115		3 5 0 1	0.10 0.19 0.08 0.90 0.99	0.47 1.24 0.33 1.54 1.82	1.30	3 1 4 2 5	0.15 0.05 0.20 0.10 0.25	0.10
	116 117 118 119 1110	***	20302	0.12 0.00 0.20 0.00 0.11	1.23 1.56 1.36 1.68 1.07	1.30	. 7 2 0 1	0.10 0.35 0.10 0.00 0.05	
50	#11 #12 #15 #14 #15	:	1 2 10 4 3	0.03 0.11 0.42 0.17 0.14	0.63 1.12 0.84 0.87	0.87	44 39 43 54 37	2.20 1.95 2.15 2.70 1.85	2.35 **(+)

positive Control

> Experiment Number: 079H95/2 No.ef PCE source per animal: 2000

n.s. * no significance

for P =< 0.05 ## for P =< 0.01

Trend : (+) increasing / (-) decreasing

C.6. Carcinogenicity

C.6.a. Mouse Carcinogenicity Study (95 weeks - male; 80 weeks - female)

GLP

Research Report:

Sponsor Volumes:

52-58

Conducted by:

Hoffmann-LaRoche Ltd.

CH-4002 Basel Switzerland

Summary:

Tolcapone was administered in the diet at doses of 100, 300, 800 mg/kg/day to Hanlbm:NMRI mice (50/sex/dose group, 100/sex/control) for two years. An additional 20/sex/dose were used for toxicokinetic evaluations at weeks 6, 52, and 79. Relatively few non-neoplastic and no neoplastic lesions were associated with tolcapone administration.

B-161,832

According to the sponsor's analysis, body weight development was not impaired by drug treatment. An alternative means of analysis suggested a decrease in body weight gain in MDF and HDF (17-30%). However, final body weights did not differ among treatment groups.

A relatively high rate of mortality occurred over the course of the study. A tendency for increased mortality in treated females was noted, but this was not significant. The study was terminated when approximately 50% of animals in one of the treatment groups died. This was week 80 in females and week 95 in males.

The primary target organs with non-neoplastic lesion apparently due to tolcapone were the forestomach and liver. In the stomach, epithelial hyperplasia (MD and HD, both sexes) and inflammation of the forestomach (MDM, HDM) and cuticular ridge (MDM, HDM, HDF) were attributed to focal irritation by the drug. The relevance of these changes to humans, in which this organ is absent, is questionable. Liver changes were hepatocellular hypertrophy (MDM, HDM, HDF), granulocytosis (MDM, HDM, MDF), single cell necrosis (HDM), Kupffer cell proliferation (MDF, HDF, HDM), abscesses (HDM), and lymphoid cell infiltration (HDM). Most of these changes occurred at a relatively high rate in control animals, but the increased incidence in treated animals is considered drug-related. Abscesses were considered incidental. No pathogenic mechanism for these changes was established. The incidence of ovarian interstitial cell hyperplasia also appeared elevated in HDF, but this was not indicated as statistically significant and was not discussed in the text of the Pathology report.

Increases in plasma exposures to tolcapone were slightly less than dose-proportional. No accumulation was evident. Relative to plasma exposures in humans receiving the projected maintenance dose of 200 mg, t.i.d. (AUC_{0.24} = 80 μ g.hr/ml), exposures in mice were:

LD: 0.5 - 1.0 times the human exposure

MD: 1.2 - 2.2

HD: 2.4 - 6.0

Methods:

Dosages:

100, 300, 800 mg/kg/day tolcapone

The high dose was selected to be close to the MTD (based on mortality in pilot studies) but cause minimal reductions in body weight gain.

Route of Administration:

Drug-in-diet

Species/Strain/Number:

Mouse (Hanlbm:NMRI, outbred SPF); 25-30 g (4-6 weeks).

Group	Ro 40-7592/001 (mg/kg/day)	Males, with animal #	Females, with animal #
A	control 1	50 (93'1612-1661)	50 (93'1362-1411)
В	100	50 (1662-1711)	50 (1412-1461)
С	300	50 (1712-1761)	50 (1462-1511)
D	800	50 (1762-1811)	50 (1512-1561)
Ε	control 2	50 (1812-1861)	50 (1562-1611)

Additional 20 males and 20 females were used in groups B, C and D for toxicokinetic investigations (protocol 162P93K); samples for profiles were taken in about week 6, months 12 and 18. These animals were immediately discarded following blood sampling.

Plasma samples were collected at 0700, 1500, 2300 hrs from 2M and 2F per treatment group; separate animals for each time point.

Statistics

Dose-effect relationships on body weight and hematology parameters were analyzed by procedures based on ranks (Jonckheere test, Mann-Whitney U-test). the following values were calculated and analyzed to assess drug effects on body weight:

- 1. total weight gain
- 2. growth rate as determined by a weighted sum of body weight gains

Statistical evaluation of neoplastic and non-neoplastic lesions was according to Peto et al. (1980) using the trend test with respect to dose. One-tailed probability levels for significant findings were 0.05 for rare neoplasms and 0.01 for common neoplasms. The occurrence of a neoplastic lesion was only regarded as significant if the incidence exceeded 5% in at least one sex/dose.

Results:

Mortality:

The following number of animals were found dead or killed in a moribund condition (autopsy in week 80 for females and week 95 for males; groups of 50 animals/sex, data from PATHDATA):

	control 1	control 2	100 mg/kg/d	300 mg/kg/d	800 mg/kg/d
males	18	24	27	24	24
females	21	20	29	24	30

As can be seen from this table, in the males the survival rate of less than 25 survivors occurred first in the low dose group, consequently all remaining males were necropsied. Overall, there was no obvious treatment-related or group-related trend as to the mortalities.

Sponsor Table a Tex

The second second

The sponsor's statistical analysis did not reveal a positive trend between dose and mortality, although there appeared to be a tendency for a higher incidence of mortality in treated females.

The study was terminated when a mortality incidence of 50% in any of the drug treatment groups was encountered. This occurred during week 80 in females and week 95 in females.

Body Weight:

The effect of tolcapone on body weight development is shown in Sponsor Figure 1.

According to the sponsor's text, only inconsistent retardations in body weight development, which never exceeded 10%, occurred over the course of the study. This conclusion is not consistent with the summary tables of statistical analyses prepared by the sponsor, or with a simple review of mean body weight differences at the beginning of the study and at study termination.

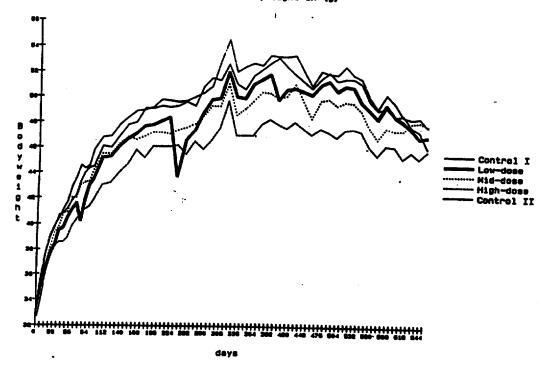
According to the sponsor's analysis, which appears to only include data from animals that survived the study, body weight gain was reduced by 16% in HDM, 15% in MDF and 29% in HDF:

STODY: 162993 MALE BOOTHRIGHTS, STATISTICS in [g] from DAY 1 to 652

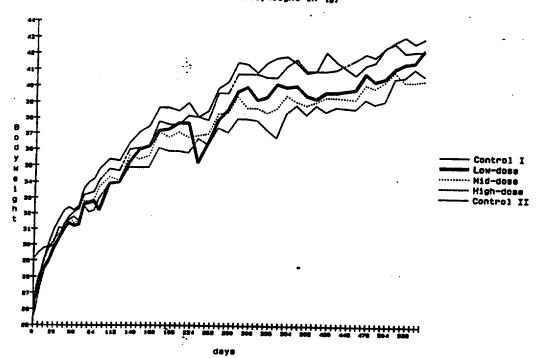
GROUP NO.ANIMAL		GROWTH- RATE	TOT.WEIGHT
32	MEAN	39.48	13.48
	STD.	8.86	5.16
B	MEAN	33.49 a	14.11
23	STD.	9.54	4.24
C	MEAN	29.66 ··	15.08
26	STD.	9.43	2.74
D	HEAN	23.90 ···	11.49
26	STD.	9.66	4.34
2	MRAN	34.17 **	13.93
26	STD.	6.30	3.85

EXCLUDED : DAY 442, 470, 630, 631, 632, 633, 636, 637, 639, 640, 644

STUDY: 162993 FRHALE BODYWEIGHTS, STATISTICS in [g] from DAY 0 to 553


GROUP		CROWTE-	TOT.WEIGHT		
NO.ANIMAL		RATE	DIFFERENCE		
31	MEAN	21.89	16.72		
	SID.	6.11	4.17		
22	MEAN	19.93	16.45		
	STD.	9.28	3.72		
C	MEAN	16.30 **	14.01 ••		
26	STD.	7.22	4.03		
D	MEAN	8.63 ··	11.69 **		
21	STD.	5.78			
E	MEAN	16.47 **	16.19 •		
30	STD.		5.68		

EXCLUDED : DAY 441, 469,


P <= 18

SST POSSIBLE DO

162P93 Mouse Hele Bodyweight in (g)

162P93 Mouse Female Bodyweight in [g]

Simply comparing group averages at study onset and termination produced similar differences relative to the controls in females, but only a 7% reduction in body weights in HDM:

MALES

Group	wgt - day 1	wgt - term.	diff	% control
C1	33.4	46.1	12.7	
C2	33.8	47.8	14.0	-
100 mg/kg	32.7	47.0	14.3	107.1
300 "	33.5	47.9	14.4	107.8
800 "	33.5	45.9	12.4	92.9

FEMALES

Group	wgt - day 1	wgt - term.	diff	% control
Cl	26.2	43.1	16.9	•
C2	26.4	42.3	15.9	
100 mg/kg	25.6	42.4	16.8	102.4
300 "	26.9	40.5	13.6	82.9
800 "	29.1	40.8	11.7	71.3

Food Intake:

Measurements were taken weekly and appeared similar in all groups except for the high dose animals which tended to spill excessively (this may have led to a 10-20% reduction in drug intake at the high dose level).

Hematology: (at death or sacrifice)

Statistically significant group mean variations in surviving animals at termination:

RBC (slight)	-	HDM
1 MCH (slight)	-	HDM
1 WBC	-	MDM
† platelets	•	HDM

These variations are not considered toxicologically significant.

Non-Neoplastic Lesions

Group Incidence Rate (%)

Lesion	·		Cl	C2	100	300	800	
forestomach	epithelial hyperplasia	M F	2 4	8 10	6 10	28* 16*	78* 42*	
	inflammation/forestomach	M F	2 2	0 4	10 4	11* ⁻ 10	38* 2	
	inflammation/cuticular ridge	M F	0 2	2 2	0 0	11* 4	30* 34*	
liver	hepatocellular hypertrophy	M F	16 26	49 22	40 31	78 * 36	71* 52*	
	granulocytosis	M F	2 2	12 0	12 8	16* 12*	41* 0	
	single cell necrosis	M F	28 36	41 50	33 41	37 50	69 * 53	
	Kupffer cell proliferation	M F	8 30	33 33	29 45	16 54*	45* 53*	
	lymphoid cell infiltration	M F	24 32	45 24	35 48	31 37	59* 24	
	abscesses	М	2	4	8	2	20	
ovary	interstitial cell hyperplasia		4	0	2	2	19	

^{*}p < 0.05 by Cochran's Trend Test.

Lesions were described as slight to moderate.

Interstitial cell hyperplasia was not indicated as statistically significant, although the incidence appears to be clearly higher in control animals.

Neoplastic lesions

No treatment-related neoplastic lesions were identified. In instances where tumors were identified only in drug-treated animals, the incidence rate did not exceed 5%. Significant p-values (<0.05) were obtained for the following tumors:

Males:

cecum adenocarcinoma:

hepatocellular carcinoma:

adrenal gland a-cell adenoma:

hemolymphoreticular histiocytic sarcoma:

1 HDM

LDM, 1 HDM

Females:

uterine myxoma: 1 HDF = -

The original Pathology Summary tables can be found on subsequent pages.

Plasma Concentrations:

Plasma levels of tolcapone and its 3-O-methyl metabolite were determined at 0700, 1500, and 2300 hrs during weeks 6, 52 and 79. Increases in AUC for TASMAR were approximately dose-proportional. Drug accumulation was not evident. Very low levels of the 3-O-methyl metabolite were detected, and amounts were relatively similar in all treatment groups.

Table A: Pharmacokinetic parameters of Ro 40-7592

			Cmax.	(µg/ml)		
	Male mice			Female mice		
Dosage group	week 6	week 52	week 79	week 6	week 52	week 79
В	2.97	2.79	2.83	3.40	5.38	4.81
С	9.11	9.68	4.41	6.92	6.21	7.47
Ð	11.9	21.3	15.3	26.1	24.3	25.0

			AUC 0-24	h.μg/ml) *		
	Male mice			Female mice		
Dosage group	week 6	week 52	week 79	week 6	week 52	week 79
В	42.7	55.9	53.4	68.0	97.8	90.2
С	136	180	101	134	102	157
D	189	397	289	402	483	345

Table B: Pharmacokinetic parameters of Ro 40-7591

	C _{max} (µg/ml)							
	Male mice			Female mice				
Dosage group	week 6	week 52	week 79	week 6	week 52	week 79		
В	0.606	0.390	0.218	0.505	0.270	0.167		
С	0.582	0.317	0.241	0.4 69	0.180	0.165		
D	0.571	0.295	0.214	0.467	0.197	0.182		

	AUC 0-24 (h.µg/ml) *							
	Male mice			Female mice				
Dosage group	week 6	week 52	week 79	week 6	week 52	week 79		
В	8.48	7.34	4.33	8.79	4.34	3.04		
С	10.0	6.32	3. <i>7</i> 1	8.39	3.55	2.79		
D	9.00	4.78	3.45	8.11	4.06	3.14		

Dosage group B: 100 mg/kg Ro 40-7592

AUC 0-24:7.00 a.m. similar on 2 consecutive days.

Dosage group C: 300 mg/kg Ro 40-7592 Dosage group D: 800 mg/kg Ro 40-7592

								-	-		4		٠	• ••	c		•	•	E
50040/73HB1HG						D.	44		: • :	*	50	50	50	H 50	7 30	# 50	50	11 50	•
MAJU MENINGON								-		47	50	34	49	4	50	49	30	4	•
SART .		_	_	_	-	٠.	_	las	 :	30	30	54	50	30	30	30	30	47	_
- CONTACT HETAGRADIS. - HETAGRAFIE BARCON.		•	:	:	:			:	:	:	:	:	:	•	:	:	:	•	
	_	-						-		50	70	**	**	30	30	49	50	30	4
INDESTRUM-ALVERLAN	100	٠.	٠	٠	٠	٠	٠	•	:	27	14	30	10	26	71	21	12	25	1
PETAGRATIC CHICENDA PETAGRATIC SARONA,	• •	•	٠	٠	•	٠	•	•		-	•	1	•	1	•	•	•	-	
THE PERSON NAMED IN	• •	•	•	٠	٠	•	•	٠	•	•	•	•		1	•	•	•	2	
Pilva							_			4		*	4	47	99	-	90	4	7
MINISTER COLL CHICKE	m.						-	•		-		•	-	Ψ.	~	٠,	~	7	•
PRIVP		•	٠	•	•	•	•	•		-	•	•	•	•	•	•	Ĭ	:	
			٠			_		-	-	40	90	41	4	4	70	41	90	4	•
MATP	• •	•	•	•	•	•	•	٠		•	•	-	•,	*	-	•	•	-	
					h	ı. G			_	-	30	-	44	4	49	**	940	49	-
ABBIDM			•						:	•	•	•	-	-	•	•	~	1	Ξ,
AND CARETINES	• •	٠	٠	•	•	٠	•	•	:	•	-	•	•	-	-	2	•	-	
•				_	_		_	-	-	4	-	49	47	4	-	49	30	49	41
PARP							_		-	7	7	•	•	7	•		~	•	•
ETION		_			_		_				-	49	49	4	44	49	34	49	44
PMLTP			•			•	•	•	:	•	-	•	ï	-	•	7	~	•	ï
-				_	_			_	_	54	34	4	49	49	90	49	49	47	49
HEMPOCELLIAM ADDRESS						•	•	•		~	~	7	7	7	~	Ξ.	7	~	٠,
MANAGERTATIVE CHECKIN		٠							ı		-		-			i			
MINITATIC CARCINON .									:	•	-	2		•				٠,	
												_							
METASTATIC SACCOUL	•	•	•	•	•	٠	•	•	•	•	•	•	•	-	•	•	•	•	•

PATROLOGY MAN	<u> </u>										PA	et	Pi	T:		/12 62 7
TEST ARTICLE TEST STETEN SPOKEGE	2 HOP1	IZ, TILLI	30	HON LA B		L	D				Pat	ra Haba	tae		1400:	-84
NUMBER OF AFTE	MALS HI	10,	1	OPLA: ICL.	DEJ	: LI	310	ts i	T O	CAR	/620	102 /.	S EX	_		_
Chew/P)He(III)				20	44T)			N ,		, ,					-	•
MARINE GLASS HENGLAST TAKES. COSTICAL ASSESSA		::								9			_	50	47	•
Delinoment, 242's Inclument finding Strategies Sweet	h	::	:	No.4	:		81	-	1	23	7	54	14	50	50	S:
ME MENEN MELAFLATIC SANCONA						~ ;	*	**	50	#	*	**		20	*	*
Inte North			:				**	4	**	4.	7	>	30	**	.	**
NET HENES HETAFTATIC CARCINGS HETAFTATIC SARCON.	• • • •		:	Paulin	- ia	1 1	* 1	#	49 :	4	# :	**	**	50	47	**
MORTEM CLASS	:::	:			ola.	1:	20	**		**	**	**	**	14	## 1	**
OVERT GLASS AREA OFFICEARCHISMA			. :		100	' ;	»	50	50	**	*	30	70	50		-
SANTIGUADO. CANTIGORA. CANTIGORA. CANTIGORA. CONTROL : : :		_	9. E	lane	:	10	54 :	50	47	**************************************	>0	49	4 : :		- 47 : :	
MCDA AND BURNESS				•			•		-		_		_			•

PATRICLES TABLES													PAG	· · · ·	PAT	<u>:</u>	26/ 16	134 2 79
TEST STSTEN : I	1001 1001	Œ,	20	LA	D	71.5	Ē L			MIX	!		MT	3	20. 10 S	: 12	-IU	1-9
NUMBER OF ARTHALISTATUS AT RECEOPS									ZOPI) DŢ	000	NJ /	2000	P/ 51	4			
GREAN/FIRENES				•	90			•	M 50				H 30		,H 50	", %	H 50	2
PANCHEAS - METASTATIC SANCON.							lend •		50	50	49	49	50	50	49	50	4	4
CONTICAL AGENDM . - METASTATIC CARCINOM			:	:			**************************************	:	50	10	**	**	**	**	49 :	3:0 :	**	41
- LETO-VOLANCION									20	**	*	**	**	44	50	47	54	61
MISTES - LÉTRICE COLL TURCE - MONNELISEMICON		:	:	•			:	:	50	:	**	:	49	:	\$0 :	:	67	-
COMMENS COLL TRACE							·: :	-	90 1	:		:	30	:	**	:	49	-
MAZES - THECA/RAMEAMA CELL T - LUTTERM	:	:	:					1 1	:	30 7 1	:	4 5 2 1	:	2 2	:	44	:	40 5
TÜRLIS STRÜMAL SARSEMA	:	:			10.	:	-	:	:::	50 : : :	:	44	:	30 1	:	**	:	47
BIVIS							-	-	:	:	:	1	:	:	:	:	:	-
MATHROIS SLAIGS		_	_	•	•.1		~	:	4	4	49	43	47	44	43	44	47	41

PATROLOGY RES													PAGI		PAT	r:		124! 2 29 1
TEST ARTICLE TEST STSTEM SPONSOR	: 1	1005	z,	20	MOI)1 TES	: :	ZZ TD	D-AI	MIX			PATE	;		: 1:	6002 2-BA	8JC
MUNICIPAL OF WALL STATUS AT HEC	MALS BOPS	WI Y:	TE I	20	7L	STE	e L	3	1014	87	000							_
 CREAM/F2100 (M)					*	1 (M)			, H	A ,	**	*,	, 50	50	*	• ,		٠, ,
BONE - DETBOSANCO-N - DETBOSA	::	:	::	:	ling.	Emp!		:	50	30	50	30	50	** :	49	10	50	
MACON					•	 1	-	:	:	:	5	2	:	:	3	<u>:</u>	- ;	<u>-</u> :
					•			•										_

C.6.b. Carcinogenicity in Rats

GLP Research

Report #:

Conducted by:

Sponsor Volumes: 59-69

Summary:

Tolcapone was administered in the diet at doses of 50, 250, and 450 mg/kg/day to Wistar rats (50/sex/dose group, 100/sex/control) for two years. Toxicokinetic analyses were conducted in satellite groups of 10 rats/sex/dose at weeks 4, 26, 52, 78 and 104.

Body weights were reduced by 22% in HDM, and 27% in HDF at study termination. Reductions in the MD groups did not exceed 7%. Food intake was significantly decreased in HDM from week 4/5 and HDF from week 2/3. Mortality occurred in all treatment groups at various times during the study; there were no clear drug-related effects.

The most notable non-neoplastic and neoplastic lesions were in kidney. Almost all (≥ 94%) HD rats and a large fraction of MD rats exhibited renal tubulopathy, tubular hyperplasia, and karyocytomegaly. Tubular hyperplasia with atypia was seen in 4-10% of MD and HD rats. Tubular cell carcinomas were diagnosed in 1 MDM, 3 HDM, and 1 HDF, and tubular cell adenomas were found in 2 MDF and 1 HDF. According to the sponsor and their expert outside evaluator, these tumors arise due to compensatory hyperplasia in response to tubule cell degeneration, and not because of a direct oncogenic effect of tolcapone. The degeneration is speculated to result from metabolic overload and exhaustion. The primary bases (among others) for this conclusion are:

- 1. tolcapone (and metabolites) are primarily excreted by the kidney
- 2. damage is restricted to the P3 segment which contains enzymes for xenobiotic metabolism
- 3. lipofuscin accumulation in the tubules is a sign of metabolic overload

The expert discounts karyomegaly as an indicator of a direct acting renal carcinogen, and cites several articles (including his own) to support this contention. In addition, he notes that the tumor formation was a late-occurring phenomenon requiring more than six-months of treatment, and that the compound was non-genotoxic. Renal tumors were found in the one-year study rat study (one nephroblastoma, one adenocarcinoma), and in the 13-week combination study with Sinemet (one nephroblastoma). The reviewer's interpretation of the genotoxicity data is that the compound was positive in the ML/TK assay.

Additional significant non-neoplastic findings were in the forestomach (squamous cell hyperplasia and hyperkeratosis) of MDM, HDM, and HDF. One HDM was diagnosed with a squamous cell carcinoma, and 2 HDM had squamous cell papillomas. The incidences of these tumors were considered within historical control range, but the high incidence of non-neoplastic lesions in this tissue in both rats and mice is consistent with a potentially neoplastic drug effect in this tissue. The sponsor suggests a direct local irritant effect of the drug as a causative factor. Forestomach changes are of questionable relevance to humans, which lack a forestomach, but since primate esophagus sometimes responds similarly to rodent forestomach (Greaves), these findings cannot be completely disregarded.

Endometrial hyperplasia was noted to occur at a higher incidence in tolcapone-treated rats. A dose relationship was not evident (highest occurrence in MD rats), so the finding was not indicated as significant by the sponsor. However, 8/60 HD rats were diagnosed with uterine adenocarcinomas, which was higher than the incidences in control (2/120), LD (3/60), and MD (3/60) rats. The incidence rate at the high dose (13.3%) exceeds all but one of the rates indicated in several historical control ranges. Coupled with the findings of endometrial hyperplasia, the possibility that these tumors are drug-related cannot be discounted. The fact that body weight in HDF was markedly suppressed, which may reduce the appearance of tumors, amplifies this possibility.

Toxicokinetic analyses suggested that plasma concentrations increased dose-proportionally, but levels did not stabilize until week 26 or 52 of treatment. Exposures in females rats appeared greater than in males. Relative to plasma exposures in humans receiving the projected maintenance dose of 200 mg, t.i.d., (AUC_{0.24} = $80 \mu g.hr/ml$), tolcapone exposures in male and female rats were:

	<u>Males</u>	<u>Females</u>	
LD:	0.7 - 1.0	0.7 - 2.0	times the human exposure
MD:	3.4 - 7.2	4.1 - 14.5	19
HD:	6.3 - 14.2	8.6 - 32.0	11

The 50 mg/kg dose is considered the "No Effect" level.

Methods:

Dosages:

50, 250, 450 mg/kg/day (Batches 209 003 and 405 009).

Dose selection was based on both toxicological and pharmacokinetic considerations. Daily gavage administration of 300 mg/kg/day causes excessive mortality. The gavage route results in exposures that are approximately twice as high as exposure by feed admix. A dose of 500 mg/kg/day by feed-admix in a 6-month study was well tolerated, but caused a 10-20% reduction in body weight. A dose of 300 mg/kg/day did not affect body weight development. Thus, a dose of 450 mg/kg was selected to lie within this range and produce exposures that were 10-25 times the AUC following expected human doses (200 mg, t.i.d.).

Route of Administration:

Drug-in-diet (pelleted preparation)

Species/Strain/Number:

Wistar rat, Hannover-derived, SPF; 4 weeks old;

males: 76-103g, females: 54-85 g

300/sex Group 2 Group 3 Group 4 Group 5 Group 1 50 250 450 mg/kg/day 181-230 1- 50 61-110 121-170 241-290 MALES A 51- 60 111-120 171-180 231-240 291-300 B 361-410 421-470 481-530 541-590 301-350 **FFMALES** A 591-600 351-360 411-420 471-480 531-540

A - Oncogenicity Animals

B - Satellite Animals for Plasma Level Determinations at 4, 26, 52, 78 and 104 weeks.

Statistics:

Routine analyses of body weight, food intake, organ weight and clinical data were by one-way ANOVA with a post-hoc Dunnett's test (normally distributed data) or Steel test (data not normally distributed). Fisher's exact test was used for macroscopic findings.

Statistical evaluation of neoplastic lesions was according to Peto et al. (1980) using the positive and negative trend tests with respect to dose. Only p-values <0.05 for rare neoplasms, and <0.01 for common neoplasms were considered statistically significant. The incidence of neoplastic lesions was considered significant only if the lesions occurred at a rate of 5% in any dose group and sex.

Results:

Mortality: No treatment-related effects on mortality were evident.

				Survivel at week 104 Kaplan Heier Estimate Hales Femeles				
(0	mg/kg/day)	15	14	77%	77%			
(0	mg/kg/day)	12	15	80%	75%			
(50	ag/kg/day)	11	18	83%	70%			
.(250	ag/kg/day)	13(A)	12	81%	BOX			
(450	ag/kg/day)		12	86%	BOX			
	(0 (50 (250	(0 mg/kg/day) (0 mg/kg/day) (50 mg/kg/day) (250 mg/kg/day) (450 mg/kg/day)	(0 mg/kg/dey) 15 (0 mg/kg/dey) 12 (50 mg/kg/dey) 11 (250 mg/kg/dey) 13(A)	(0 mg/kg/day) 15 14 (0 mg/kg/day) 12 15 (50 mg/kg/day) 11 18 (250 mg/kg/day) 13(A) 12	deaths Females Keplan in Males (0 mg/kg/dey) 15 14 77% (0 mg/kg/dey) 12 15 80% (50 mg/kg/dey) 11 18 83% (250 mg/kg/dey) 13(A) 12 81%			

⁽A) . Two males died after blood sampling

Body Weight:

MALES

	WK 0	WK 105	% CON
C1	88	611	. •
C2	87	611	-
50 mg/kg	87	602	98
250 "	87	574	94
450 "	87	474	78

FEMALES

	WK 0	WK 105	% CON
C1	68	339	•
C2	70	347	-
50 mg/kg	69	338	99
250 "	69	318	93
450 "	67	250	73

The first statistically significant reduction in body weight in HDM occurred at week 8 (5%). By week 20, HDM weighed 15% less than controls. HDF weighed 4% less by week 4, and 14% less by week 16. The weight differences between control an HD animals became progressively greater over the remainder of the study.

Some statistically significant differences in body weight between control and MD animals were evident by week 50, but since the differences never exceeded 11%, they are not considered important.

Food Intake:

Significantly decreased at most points during the study in HDM (4-14%) and HDF (7-20%).

Hematology: (differential leukocyte count on control and HD at week 103)

No treatment-related effects were evident. <u>Individual</u> variations outside of a historical reference range were:

t	lymphocytes	-	1 Con F
1	lymphocytes	-	1 HDM, 1 HDF
Î	Segs	-	2 HDM
t	eosinophils	-	2 Con M, 1 Con F
			2 HDM, 1 HDF
Ī	monocytes	-	4 Con M, 3 Con F
			6 HDM, 3 HDF

Gross Pathology:

lung, foci	-	MDM (35%)
stomach,		
discoloration	-	MDM (13%), HDM (30%)
		HDF (23%)
foci	•	HDM (42%)
		HDF (20%)
duodenum, dilatation	-	HDF (10%)
cecum,		, ,
liquid contents	-	HDM (15%)
distended w/ feces	-	HDM (22%)
		HDF (10%)
kidney, watery cyst	-	HDF (12%)
uterus, discoloration	-	MDF (30%)
thymus, foci	-	HDF (13%)
mesenteric lymph node,		
nodular thickening	-	MDM (8%), HDM (8%)
•		· // == = - (-·-/

__

Non-neoplastic lesions:

Group/Incidence Rate (%)

				Olou	by inciden	ce Kate (%)
	Lesion		1	2	3	4	5
forestomach	squamous cell hyperplasia	M F	2 2	-	4 4	39* 4	88* 28*
	hyperkeratosis	M F	2 -	-	4 2	28*	70* 14*
kidney	cortical cysts	M F	8 2	4 2	6 4	4 8	6 36*
	karyocytomegaly	M F	-	-	-	43* 90*	92* 95*
	papillary hyaline casts	M F	4 4	16 2	10 4	26* 20*	56* 38*
	papillary degeneration	M F	-	-	-	6* 18*	21* 16*
	tubular hyperplasia	M F	•	-	-	33* 78*	90* 89*
	tubular hyperplasia w/ atypia	M F	-	-	-	4 ⁺ 6 ⁺	8+ 9+
	tubular cystic hyperplasia	M F	-	- -	-	2 27	15 73
	tubular necrosis	M F	-	-	- 2	18* 47*	38* 85*
	tubular hypertrophy	M F	2	-	•	- 2	2 11
	tubular cyto. lipofuscin	M F	-	-	-	31	- 60
	tubulopathy	M F	-	-	-	78** 96**	98** 95**
uterus	cystic endometrial hyperplas	ia	8	12	15	30	14

The statistically significant effects were not clearly identified in the summary tables or in a statistical table. Thus, only those effects described in the text as "significant" are labeled.

<u>.</u>

⁺ Shown are data from the Expert Re-evaluation (Vol. 72:69).

The data include animals from both the oncogenicity and toxicokinetic groups. The TK animals were examined microscopically only when there was a necropsy finding. This resulted in unequal n's among groups; hence, the data are expressed as "Incidence Rates".

Tubulopathy: a summarizing term used by the pathologist when either tubular cell degeneration, tubular single cell necrosis, tubular cell hyperplasia, and/or karyocytomegaly was diagnosed in the straight portion of the proximal tubules.

According to the sponsor's expert evaluation of the data, the basic renal lesion was single cell death in the straight portion of the proximal tubule at the mid and high dose level. The tubulopathy was characterized by tubular cell degeneration, necrosis with reactive regeneration and hyperplasia occasionally with atypia, and karyocytomegaly. Females tended to be more severely affected than males, possibly due to higher drug exposures. The suggestion is raised that cell death and "dropping out" (degenerate cells were found in the tubule lumen) may be due to "metabolic overload" or exhaustion; the accumulation of cytoplasmic lipofuscin, an index of increased metabolic activity, is consistent with this hypothesis. The compensatory hyperplasia is suggested as a mechanism of renal tumor development. The expert suggests that karyomegaly is not necessarily indicative of a direct renal oncogenic effect of tolcapone.

The forestomach changes were marked and appear dug-related, particularly in males. The sponsor suggest a direct local irritant effect of the drug as a causative factor. These findings support the contention that the observed stomach neoplasias are also drug-related. Forestomach changes are of questionable relevance to humans, which lack a forestomach, but since primate esophagus sometimes responds similarly to rodent forestomach (Greaves), these findings cannot be completely disregarded.

Increased incidences of endometrial hyperplasia were not dose-related, and were thus not considered significant. However, this lesion appeared more frequently in drug-treated animals, and is mentioned in view of its possible relationship with uterine tumors. The sponsor suggests that estrogenic effects of tolcapone may underlie this lesion, but no data was submitted to support this mechanism.

APPEARS THIS WAY
ON ORIGINAL

Neoplastic lesions

	Lesion		1	2	3	4	5
kidney	tubular cell carcinoma	M F	0/50 0/50	0/51 0/50	0/52 0/50	1/51 0/50	3/52 1/55+
tubular cell adenoma stomach squamous cell carcinoma		M F	0/50 0/50	0/51 0/50	0/52 0/50	0/51 2/50	0/52 1/55+
squamous cell carcinoma squamous cell papilloma adenoma	squamous cell carcinoma	M F	0/52 0/50	0/50 0/52	0/51 0/50	0/53 0/51	1/55 0/55
	M F	0/52 0/50	0/50 0/52	0/51 · 0/50	0/53 0/51	2/55 0/55	
	adenoma	M F	0/52 0/50	0/50 0/52	0/51 0/50	0/53 0/51	1/55 0/55
uterus	adenocarcinoma		0/53	2/57	3/54	3/53	8/57

⁺ Shown are data from the Expert Re-evaluation (Vol. 72:69).

The renal tumors were considered to be due to increased tubular cell proliferation as a consequence of tubular necrosis.

The apparent dose-related increase in uterine tumors suggests that this may be a true effect of the drug. The sponsor has submitted two documents with historical control data for uterine adenocarcinomas in European Wistar rats. In a book chapter by Brown and Leininger (Pathobiology of the Aging Rat, 1992), a very broad range of incidence values is reported (0.5, 1.3, 5, 11, 12.7, 39%). In an EPS (Experimental Pathology Services) historical control data compilation, the highest incidence of uterine adenocarcinomas in 27 studies of 104-130 weeks duration was 8%. Since the incidence rate in this study (8/57 = 14%) exceeds all but one of the historical control data points, it should not be dismissed on this basis. The fact that body weight in HDF was markedly suppressed, and hyperplastic changes in the uterus were also noted at a relatively high frequency adds further support for the contention that TASMAR may be responsible for uterine neoplastic changes in the rat.

The incidence of forestomach tumors was also considered within historical control range. However, the high incidence of non-neoplastic lesions in this tissue in both rats and mice is consistent with a potentially neoplastic drug effect in this tissue.

Decreased incidences of pituitary adenomas in HDM and HDF, and mammary gland fibroadenomas in HDF were also noted.

Plasma Concentrations:

(weeks 4, 26, 52, 78, 104 at 0700, 1100, 1600, 2100, 0200 (from 2/sex/dose/time point)

Increases in plasma concentrations were approximately dose-proportional at the initial measurement (week 4). From weeks 4-52, increases were greater than dose proportional (twofold in males, three-fold in females), and stabilized thereafter. Plasma levels were two- to threefold higher in females compared to males.

Based on AUC determinations made between weeks 52-104, rat exposures were higher than exposures in humans receiving 200 mg, t.i.d. (80 ng.hr/ml), by 12-14 times in HDM, and 24-32 times in HDF.

Table 1: Pharmacokinetic parameters of Ro 40-7392 in male rats

Table 3 : Pharmacolcinetic parameters of Ro 40-7592 in male rate

		Cmax (signal)											
	week 4	week 26	week 52	week 78	week 104								
Group 3	3.07	3.60	4.07	4.17	4.24								
Group 4	16.1	27.9	29.4	29.4	27.2								
Group 5	28.0	53.1	58.9	50.0	53.7								

		AU	C 0-24 (h.µg	/mi)	
•	week 4	week 26	week 52	week 78	week 104
Group 3	54.5	72.4	76.5	71.7	72.7
Group 4	274	458	573	508	475
Group 5	503	969	1138	956	1041

Table 2: Pharmacokinetic parameters of Ro 40-7592 in female rats

Table 4: Pharmacokinetic parameters of Ro 40-7592 in female rats

week 26

118

763

1487

AUC 0-24 (h.µg/ml)

week 52

122

1161

week 78

128

978

1882

week 104

166

		Cmax (µg/ml)										
	week 4	week 26	week 52	week 78	week 104							
Group 3	3.21	7.04	6.66	7.08	9.42							
Group 4	27.1	37.3	61.2	53.7	59.2							
Group 5	51.3	82.2	126	102	182							

Dosage group 3: 50 mg/kg Ro 40-7592 Dosage group 4: 250 mg/kg Ro 40-7592 Dosage group 5: 450 mg/kg Ro 40-7592

week 4

56.3

328

691

Group 3

Group 4

Group 5

Dosage group 3: 50 mg/kg Ro 40-7592 Dosage group 4: 250 mg/kg Ro 40-7592 Dosage group 5: 450 mg/kg Ro 40-7592

TEST ASTOCLE : 30 40-7592/001 PRST STSTEM : 382, 104 WEEKS, FEED ASSURED SPONSOR : F.NOTYMANN-LA MOCHE AG

PRT: 24/1100

PARTOC. NO.: 95005 NAM BARK : 17-APR-94 PathDate9 System V4.1

T OF ARTIGLE WITE RESPLASTIC LESIONS BY OMEAN/GROUP/SEX S AT RECEIPST: NO. DECL. DEATHS Junicity Groups A

	80		-	P :		M		24		34		4		M
Mass/F2:@Dis	**	-	eg pe		*	20)) 50	50	*	90)X 90	*		•
	_			-	*	>>	20	*	*	*	30	,	20	-
- Antrodytess				. :		-	-	-		-	•	-	-	
- Grander cell tener					1	_ 1	•	-	•	-	1	•		
- Haligrant reticulation							•	-	•	1	•	1	•	
· Notastatia arcimas							•	•	•	1	•	-	•	
• Ot Igodandroji lans	•	٠	•	. 3	•	•	•	•	•	-		•	•	
	_			.		*	>>	20	*	49	20	•	*	4
- Streetman	-	-	•	. :	•	•	•	•	1	•	•	•	•	_
				.	49	49	30	70	-		70		36	4
- Myselenftrankister educes						-	•	-	•	-	•	•	•	
- Palastatic of corpinate						-	-	•	•	•	•	-	:	
- Nutratable of servers	•	•	•	• •		•	•			•			••	
BAL CONTT				-4 1		•	•	•	•	1	•	•	1	
- Squares and papillons						-	-	-	-	1	-	•	•	
Squares cell corelege	•	•	•		•	•	•	•	•	•	•	-	1	
Mana	-		-	md 3	*	30	*	**	**	*	36	*	**	,
- Squares call corrients						•	. •	•	•	•	•	•		
- Symmes out paytiles		•	•	. :	•	•	•	•	-	-	-	•	8	
Printer				ad 1	50	49	*	70	*	*	*		**	,
- Adeneseretrans				. :	•	•	1	•	•	•	-	•	•	
Leterpera.	•	•	•	. :	•	•	•	3	•	•	•	•	•	
	-	. Es		.,	*	49	*	30	*	*	,,,	*	*	,
- Suressa (not othervice specifies).					•	. •	•	•	•	1	•	-	•	
Liven				md 1	>>	70	*	*	70	*	•	49		1
- Hemorgiana		•	٠		•	-	-	-	-	1	-	1	1	
· Demarqueseranne	•	•	•	. :	-	•	•	-	•	•	•	-	•	
· Pepeteositator admum		_	_	. :	3		1	1	2	1			1	

PAT: 27/1100 350010 PATHULOUT REPORT

PARMOL. NO. : 95005 EER BARK : 17-APS-96 THEF AMPICES : 30 40-7592/001 THEF STRIME : RAY, 104 WEEKS, FRED AMERICAN

NUMBER OF ANIMALS WITE FEATOR AS MECHOPSE: EQ.					BT	024	ur/e	1001	/SE				
		204E			LA .	- 1	<u> </u>	- ;	M		u	54	
2044/79611B			1 1 ELWEIN	-	50		, ,		*		*	30	
******** @.MD	-	No.Ex	potent 1					*	*	70	*	20	٦
Admossretams			:	-	3	•	3	•	3	•	-	•	
Adamenta			1	-	•	•	-	-	-				
Fibrandomena			:	ŧ	•	٠	12	•	7	•	•	•	
ICIN/SWICKTIS		Co.L		20	90	90	30	70	90	20	70	90	•
Danel Coll Tunor					•	1	•	1	•	-	•	1	
fibrems					1	1	-	1	•	-		2	
Remargians					•	-	•	•	•	-	•	•	
Securitaria			1	•		2			•	-	-	1	
Rerotesenthme			1	2	•	3			-	•	•	•	
Lolonyacarossa			1	•	1	•	•	-			-	•	
Lipena.						•	•	1		•	-	;	
Notactable of porcess					•		:	-	•	•	•	•	
Salasman		• •		•	•	,	•	;	•	•	•	• :	
Senames squares sell earth						•	-	•			-	-	
Square call careines				_		:		•	•		-		
- Squares cell popilion			:										_
part (augs)				-	1	:	•	1	1	•	-	:	
``too '	• •	• •	:	1						_:			_
					1		2	-	•	-		-	
wret erest tuner				•	•	•		•	•	•	•	•	
BOST CAVETTICS			meterd :	4	3	- 4	5	3	7	3	-	5	
- F15reagreema						•		•	•	-	•	1	
- Lipean,			:	•	•	•	1	-	-	•	-	-	
- Proposition						-	-	-	•	•	•	-	
- Salvannes			:	-	•	•	1	•	•	•	•	•	

PATRICLOS RES		10CC	PAT: 20, 1	25/1100 350010
	: BO 40-7992/001 : BAT, 104 WHERE, FEED ADMIXTURE : P. ROFFIRADI-LA BOCKE AG	DATE		P\$006 MM 17-AP2-96 tem V4.2

Howest of Andreas fire Heofestyle Legions by obsam/shosy/sex stayes at Hechopst; Eq. Incl. Beates Consequentity Groups λ

		-				M		24		34		4		•
\$1646/7t16616		#0.		: MLS		-		•	# 50	•	H 30	, 30	# 54	ĭ
PANTABAS	_					90	- 90	50	30	44	-			-
- Astror coll admoss				:			7	-	~	_	~	49	30	
- Inlet cell adames.	-		_	. :	ĭ		ż	_	. 5	•	i	•	•	
- lotet esti euroteena			:	. ;	-	•	:		-	:	:	:	-	
G94978				-1:	-	-	-	-	_	-		**	34	-
Lipensian terr			•				2	1	~	~	~	-	7	
- Tehniar coli serotame						-	-				•		į	
Tabular coli adonam	•		•		-	•	-	-	-	•	:	2	:	
www.		-			20	•	*	-	20	_	20		20	_
Sonign Laydig soll tusor	•	• •	•	. 1		-	_ 1	•	1	-	3	•	•	
MASES					-	30	•	30	•	49	•	47	•	
purite terrefere-green mer pro-					•		•	•	•	1	•	•	•	
Surian granuless sell term.							•	1	•	1	•	-	-	
Saniga Sertal S and Super	•	• •	•	. 1	•	-	•	•	•	•	•	-	•	
Bonten theorem	•	• •	•	• •	•	•	•		•	•	•	•	•	
Titles	•		-	ed 1	-	90	•	30	•	41	•	30	•	
Administrations	•	•	•	. :	-	•	•	•	•	2	•	3	-	
Address	•		-	. :	-	•	•	-	•	-	-		•	
Coretemereum				. :	•	-	-	1	-	-	•	•	•	
Managhan		• •			•	•	-	•	•	•	-		•	
Lotenzania	• •	• •	•	. :	•	1	•	1	-	•	•	-	•	
Leterpreserum	• •	• •	٠	. :	•	-	•	-	-	-	-	-	•	
Street polyp		• •			•	7	•	6	-	4	-	5	-	
Sanign teretese	• •	• •	•	. :	•	•	•	•	•	_•	•	•	•	
MVI2		10.E-	m in	ed :		50	•	*	•	49		90		5
Schemes	٠.				•	•	-	•	•		•	-	•	
Etremal polyp	• •	•	•	. :	•	•	•	•	-	-	-	•	•	
TRETAIT G.MB	1	19. Ber			30	30	20	30	*	30	#	50	30	7
Adminis of para distalle					12	8	10	*	-	-		20		•
Address of para intermedia														

SUPPLY TAKE		PAGE	PAT: NO.:	26/1100 350010
	2 DO 40-7992/001 2 BAT, 104 WHEES, FEED AMEDITURE 2 7.HOUTHANN-LA BOCER AS	DATE		95005 EM 17-APR-96 ton V6.1

SPONSOR : 7. HOFTMAN	COMPOR : 7. HOFFMANN-EA BOCES AS										
NUMBER OF ARBIALS RITE RE STATUS AT RECEOPST: RO, I Oncoopenialty Groups A	oplastic le MCL. Dertes	5 2 Car	ST.	080	AE/G	ROF	7/5	x			
	***		*		24		34		4	Ş <u>u</u>	
Chi.44/71101116	III. AUTULS	1 K	*	50	30	70 70	90	# 90	30	14 20	*
TIMBOD GLOD	No.Deprined		*	50	*	30	44	*	41	4	4
- C-cell adenum	• • • • • •	. 4	7	1	•	4	3	5	4	•	*
PARATHYRESO GLANDS - Adoness	No.Sections		# ;	*	4	*	44	47	9,	4	4
AFFECHAL CONTICOS	In.landay :		50	,	50	*	99	50	**	50	
- Adenese	• • • • •		5	i	:		•	:	•	:	•
ASSESSAL PRODUCTION	No.Bearing :		*	*	30	*	*	×	#	50	**
- Not ignant phondressyring	1	. 1	-	•	:	•	•	-	•	1	•
Mountainer, 179. - Lysphablastic miligrant typphone :	He. Suspined		**	**	*	*	*	×	*	*	*
- Lymphosytic antigrant Lymphose - Incligent Fibrase histiosytems	·'• • • • • •		:	•	į	3	į	1	:	:	ž
PLES:	No.Euminet		*	50	20	*	50	*	49	50	50
Terrolas - Berrigo Wymana	Ro.Grantoud 1		*	4	*	*	4	49	**	47	47
LINEN HERES	No. September 1	3	5	⇟	Ŧ	,	4	1	•	-	
- Notangiana			•	-	•	•	:	•		•	-
- Metastasts of servens		-	ż	:		_:	·		:	i	:
CSENT. LYPPE MUSE	Do. Septimed		**	349	30	30	50	50	49	34	*
- Kamarylana		4	4	4	3	7	-	7	•	1	

POSSIBLE COPY

AMERICA STATES			•				i	œ		20. :	!	350	10
THE ASSECUE 1 NO 40-7902 THE STATES 1 NOT, 104 W SPONDOR 1 T. NOTTINGS		, 70			X 7 (4)	=		47		30. i	17	-API	-96
MOMBER OF ANTHRES WITH MED STATUS AT MECHOPST: IO, IN Satellite Groups 3	WLM ICL.	PIC I	.24) 15	10428	87	094	MI/C	100	7/81	es .			
	900		-		*.		>,		»,		.		<u>~</u>
CORAL/PENSING		APERAL	:	10	*	10	10	*	10	10	10	16 16	10
this: - Greater cell toper			3	2	5	1	4	1	4 : 1	1	4	:	•
una				6	2	3	•	3	,	,	4	1	
- Alvestarformaticier advance	•	• • •	:	ī	:	:	•	:	•	•	-	•	•
STORES				:	:	:	:	:	:	:	•	5	.\$
testimo		-		:	:	:	;	:	:	:	:	:	:
LINER Constructions experience				•	:	;	:	2	:	•	1	3	-
Processing • Astron cell comma				:	:	•	-	:	:	•	•	1	-:
Elévers Pubelor soll agretium	No.8			:	:	:	:	:	:	:	:	2	•
TESTES - Davigs Laydig coll taster	-		•	1	:	:	:	<u> </u>	:	: 1	<u> </u>	:	<u>.</u>
OWNLES - Benign granulous-thurn out! turns.	-	- Inel	:	:	1	:	2	:	:	:	2	:	-
	80.8		:	-	3	•	,		5		3		-,
- Advances/classes									-			-	1
- Stressl polyp	::	::	:	:	:			:	1	:	:	•	1
- Street polyp	**		:		7	2	.		1		2	•	-;
- Streed polyp	**		:	•	•	.•	<u>:</u>	•	1	•	:	•	
- Street polyp	**		:		7	2	;	:	1	*	5 .	29/1	3 3 .
PRINTARY BAND Address of para dictalia Address of para dictalia	Ha.B				7 7 -	2 1	777	A CC	1	1 1 10.:	95 17	29/1 150	100
PRINCIPAL SHIPS	##. E	FRE 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2	7 7 7	2 1	777	AGE ICC	I O O O O O O O O O O O O O O O O O O O	2 1 1 20.2 10.2	95 17	29/1 150	100
PRINTARY BAND Address of para dictalia Address of para dictalia	##. E	FRE 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2	7 7 7	2 1	777	AGE ICC	I O O O O O O O O O O O O O O O O O O O	2 1 1 20.2 10.2	95 17	29/1 150	100
PITUTIAN GAME ***********************************	MARIA 1/001 1/001 1/12A 1/12A	FEE I DEATH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e e e e e e e e e e e e e e e e e e e	. 7 7	2 1 1 1 T T T T T T T T T T T T T T T T	7 7 7 7 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	AGE CC AFFE SEAL	1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95 3 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	29/1 150 005 -AP2 0 V6	1 2 3 3
PITUTINY GAME PITUTINY GAME - Advance of para diotalia Advance of para diotalia PATRICLES EMBORY PATRICLE / NO 40-7892 PATRICLES / NO 40-7892 PATRICLES / RRT, 104 M ASCHEGOR / F. MOTTALM MINISTER OF ANTIGALS WITH MED FIRSTER AT RECORDET: EO, IN Satallite Groupe 3	Ma.B	, FE 1 SOCIETY OF THE PERSON NAMED IN COLUMN N	1 T T T T T T T T T T T T T T T T T T T	e e e e e e e e e e e e e e e e e e e		2 1 1 1 T T T T T T T T T T T T T T T T	7 7 7 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AGE CC GC GC GC GC GC GC GC GC GC GC GC GC	1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98 37 954	29/1 150 005 04/2 0 V6	1 3 3 020 020 -96 .1
PITUTINY GAME PITUTINY GAME Advance of para diotalia Advance of para diotalia Advance of para diotalia PATRICLOST ENDOST SERVICES / NO 40-7892 STAT ARTOCLE / NO 40-7892 STAT STATEM / NAT, 10-4 M ACCUSOR / F. MOTERALS MITTE MED STATUS AT RECOGST: E0, IN SALULLIA GROUPE B COMMATTERNAN - Politotor cell advance AMENAL MERLIA	III.B.	FELT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37	2 1 1 1 0243	7 7 7	AGE CC GC GC GC GC GC GC GC GC GC GC GC GC	1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 100.2 100.2 X 10 10 10 10 10 10 10 10 10 10 10 10 10	95 37 75 6	29/1 150 005 -AP2 0 Vé	1 2 3 3
PITUTINE ALMO - Advance of para diobalia	MA.B	J. FEI SOCE STATE OF THE STATE		CORS		2 1 1 1 10	7 7 7	AGE CC AFFE SEAL BOST	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 2007: 200.2 200.2 200.2	95	29/1 250 005 - APs 0 V6	1 3 3 100 010 010 010 010 010 010 010 010
PITUTINIT GLUD *Advance of para diobalia. **PATIBLIOUT EMPORT **PATIBLE J BO 40-7592 **PATIBLIA J BATTELE J BO 5TATES AT SECROPTY: EO, IN **SATURE AT SECROPTY:	Ma.B.	FE I GOOD		2 2 2	57 7	2 1 1 1 0344	7 7 7	AGE CC MATERIAL SEAM HOW 19	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 100.2 200.2 89 20 1 1	95 3.7 95 27 95 10	29/1 150 005 -AP2 0 V6	1 2 3 3 010 010 -96 -1
PITUTINY GAME PITUTINY GAME Advanced para diotatio. Advanced para diotatio. Advanced para diotatio. PATRICLE : NO 40-7892 PREST ARTICLE : NO 40-7892 PREST ARTICLE : RAT, 104 N ASCREGOR : F.MOFFRANCE PREST ARTICLE : RAT, 104 N ASCREGOR : F.MOFFRANCE PREST ARTICLE : RAT, 104 N ANGELIA OF ARTICLE WITH NEW STATES AT RECEOUTY: RO, IN Batallite Groupe 3 COMMANDER RATE - Politorier cell advance	Ma. B	FE I GOOD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	57 7	2 1 1 1 10 · · · · · · · · · · · · · · ·	7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AGE COC SEPARATE SEPA	1 8 8	2 1 1 200.2 2 20 Sy X	95 5	29/11 250 005 -AP2 0 Vd	1 2 3 3 · · · · · · · · · · · · · · · · ·
PITUTINY GAME Advance of para diobalia. PATRICLET EXPORT PATRICLET TABLES TEST ARTICLE / 20 40-7802 TEST ATTOTHE / 2RT, 104 18 SPORTOR / F.HOFFHAME WHINES OF ANEXALE WITE MED FRATUS AT SECROPET: EO, IN Satallite Occupe 3 CHAMPINGS AMBRIL MERGLAS - Politorior cell advance . - Politorior cell advance . - Indignat phendremosytem .	Ma.B	FIG. 1 SOCIETY OF THE PROPERTY		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5T 10	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ade CCC CCC CCC CCC CCC CCC CCC CCC CCC C	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 200.2	95 37 554 10	29/11 250 005 -AP2 0 V6	1 3 3
PITUTINY BAND ANALYSIS CAMP ANALYSIS CAMP PATHOLOGY EMPORY PAT	Ma.B	FIG. 1 SOCIETY OF THE PROPERTY		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	57 7	8 COM	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	95 27 27 20 10	29/1 250 005 -AP2 005 1 10	1 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
PITUTINY GAME PITUTINY GAME Advance of para distalla. Advance of para distalla. Advance of para distalla. PATRICLES I SO 40-7892 PRESENT TARRES PRESENT	Bo.B	Fig. 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5T	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	777 - 3 3 3 3 4 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AGE CCC GETTE GETT	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	95 37 554 10	29/11 250 005 -AP2 0 V6	1 3 3
PITUTINY GAME - Advance of para diotatio PATENCE / BO 40-7892 FERT ARTECLE / BO 40-7892 FE	Control of the contro	Fig. 1		2 2	5T	2 1 1 10 · · · · · · · · · · · · · · · ·	777 - 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AGE COC COC COC COC COC COC COC COC COC CO	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 1 PART : 100.2 2 0 Sy X X 10 1 1 1 1	95 27 20 10	29/3 29/3 29/3 2005 100 100 110 110 110 110 110 110 110	1 3 3

00 W 1000 SETIM

C.7. Antigenicity in Mice and Guinea Pigs

Conducted by:

Department of Toxicology and Pathology

Nippon Roche Research Center

Kamakura, Japan

Research Report #:

J-146,090

Summary:

Tolcapone did not display antigenic properties in the active systemic anaphylaxis in Guinea pigs and passive cutaneous anaphylaxis in rats.

Methods:

Active Systemic Anaphylaxis (ASA) in Guinea Pigs:

Two groups (n = 10) were used to assess the antigenicity of tolcapone and Penicillin G as a positive control. Animals were sensitized by two subcutaneous injections of either tolcapone (7.5 mg) linked to guinea pig serum albumin (GPSA), or penicillin (7.5 mg) linked to GPSA at 4 day intervals. Animals were challenged after 10 or 20 days (n=5/day) by intravenous of either tolcapone or penicillin linked to mouse serum albumin (MSA; 12 mg/animal). Animals were monitored for anaphylaxis.

Passive Cutaneous Anaphylaxis (PCA) in Rats:

Groups of 10, 10, and 5 mice were used to prepare tolcapone, penicillin or ovalbumin antigenic sensitization solutions. Each compound was linked to GPSA, diluted in saline and mixed with alum cream at a concentration to apply 10 or 1 µg/of tolcapone or penicillin per animal. Animals were sensitized by two intraperitoneal injections of either tolcapone-GPSA, penicilli-GPSA or ovalbumin at 4 week intervals. Two weeks after the final injection, blood was collected from mice by cardiac puncture for preparation of antisera, which was injected intradermally into rats. Twenty-four hrs later, the rats were challenged with an intravenous injection of tolcapone or penicillin linked to mouse serum albumin (MSA), or ovalbumin solution containing Evans' blue dye. Thirty minutes after the challenge, the rats were sacrificed and evaluated for a reaction by the formation of blue spots in the skin.

Results:

Tolcapone did not produce signs of anaphylaxis in sensitized guinea pigs. Signs of anaphylaxis were observed in the penicillin-sensitized positive control groups.

In the PCA test, no blue spots were observed in the skin of rats that were sensitized and challenged with tolcapone. Penicillin produced the expected antigenic response.

D. PHARMACOKINETIC/ADME STUDIES

Single Dose Pharmacokinetics/Absorption

- 1. Single-Dose Oral and IV Pharmacokinetics in Rats and Dogs
- 2. Single-dose Pharmacokinetics of ¹⁴C-Tolcapone in Rats

Distribution

- 6. Tissue distribution following single oral administration of ¹⁴C-Tolcapone (5 mg/kg) to pigmented rats
- 7. Tissue distribution following single oral administration of ¹⁴C-Tolcapone (20 mg/kg) to albino rats
- 8. [14C]-Tolcapone Distribution: Whole-Body Autoradiography (WBAR) in pregnant pigmented rats after oral administration
- 9. [14C]-Tolcapone Distribution: Whole-Body Autoradiography (WBAR) in male and female albino rats after oral administration
- 5. In vitro binding of tolcapone human, rat and dog plasma proteins.
- 21. Plasma Protein Binding: In vitro interaction with digitoxin, phenytoin, tolbutamide and warfarin in human plasma.

Metabolism

- 12. In vitro metabolism of tolcapone by rat, dog and human liver microsomes
- 3. Plasma levels of tolcapone glucuronide in rats and dogs during oral toxicology studies
- 4. Plasma levels of tolcapone glucuronide, tolcapone and 3-O-methyltolcapone after intravenous administration of tolcapone glucuronide to rats
- 13. Plasma metabolites of tolcapone after oral administration to humans, dogs and rats
- 14. Urinary metabolites of tolcapone after oral administration to humans, dogs and rats
- 15. Urinary metabolites of tolcapone in rat and mouse after oral and i.v. treatment
- 16. Biliary metabolites in rats after oral [14C]-tolcapone
- 18. Biliary metabolites in dogs after oral [14C]-tolcapone
- 22. Drug Interaction Studies: In vitro metabolism studies
- 23. Effect of tolcapone on hepatic metabolism in vivo

Excretion

- 10. Excretion balance and blood levels of [14C]-tolcapone in rats after i.v. and oral administration
- 11. Excretion balance of [14C]-tolcapone in dogs after i.v. and oral administration
- 19. Excretion into rat milk after oral administration of [14C]-tolcapone
- 20. Placental transfer of [14C]-tolcapone into rat fetuses after oral administration

D.1. Single-Dose Oral and IV Pharmacokinetics in Rats and Dogs

Research Report #: B-104,522 Volume: 79

Summary:

The single-dose pharmacokinetics of tolcapone, including the formation of 3-O-methyltolcapone, were determined in rats (<u>i.v.</u>: 1.5 mg/kg; <u>p.o.</u>: 1.5 and 29.7 mg/kg) and dogs (<u>i.v.</u>: 1.5 and 2.0 mg/kg; <u>p.o.</u>: 1.8 and 4.3 mg/kg). The pharmacokinetics of 3-O-methyltolcapone were also determined following administration to rats (0.5 mg/kg, i.v.) or dogs (0.5-1.0 mg/kg, i.v.; 1.7-2.0, p.o.).

The pharmacokinetics of tolcapone were similar in the two species. Tolcapone had a relatively short half-life, low volume of distribution, low plasma clearance, and high oral bioavailability.

Results:

Single-Dose Tolcapone Pharmacokinetics in Rats

Dose, route	t _{max} (hr)	C _{max} hr	AUC _(0-inf) (h.μg/ml)	Vd _{ss} (I/kg)	Cl (ml/min.kg)	t _{1/2} β (hr)	F
1.5, i.v.	•		2.91	0.20	8.61	0.56	
1.5, p.o.	0.33	1.41	2.19			1.66*	74.6
29.7, p.o.	0.47	10.45	26.73				

^{*}median; n = 3/group

Single-Dose Tolcapone Pharmacokinetics in Dogs

Dose, route	t _{max} (hr)	C _{max} hr	AUC _(0-inf) (h.µg/ml)	Vd _{ss} (l/kg)	Cl (ml/min.kg)	t _{1/2} β (hr)	F
1.5, i.v.			16.13	0.16	1.54	1.76	
2.0, i.v.			14.86	0.16	2.24	1.13	
1.8, p.o.	1.5	5.04	14.00			1.39	71.4
4.3, p.o.	0.5	8.27	20.00			1.13	62.2

n = 1

The 3-O-methyl metabolite appeared rapidly in plasma after i.v. administration in both species, although t_{max} was achieved relatively slowly in dogs. Plasma levels of metabolite were generally low, although in rats they exceeded those of the parent by 1 hr post-dose. Elimination of the metabolite was slower than that of the parent compound:

3-O-Methyltolcapone Pharmacokinetics after Tolcapone Administration in Rats

TOL dose, route	t _{max} (hr)	C _{max} (hr)	AUC _(0-inf) (h.µg/ml)	Vd _{ss} (l/kg)	Cl (ml/min.kg)	t _{1/2} β (hr)
1.5, i.v.		0.64	1.64			0.24
1.5, p.o.	0.33	0.50	2.80			2.87
29.7, p.o.	1.0	0.59	10.75			11.9

3-O-Methyltolcapone Pharmacokinetics after Tolcapone Administration in Dogs

TOL dose, route	t _{max} (hr)	C _{max} (hr)	AUC _(0-inf) (h.μg/ml)	Vd _{ss} (l/kg)	Cl (ml/min.kg)	t _{1/2} β (hr)
1.5, i.v.	5.0	0.90	19.20			10.4
2.0, i.v.	4.0	0.42	6.48			7.83
1.8, p.o.	7.0	0.79	16.00			9.17
4.33, p.o.	5.0	0.56	7.92			3.95

n = 1

The single-dose pharmacokinetic parameters for the 3-O-methyl-metabolite were determined following intravenous and oral administration, and were not markedly different from those of the parent compound:

Rats

3-O-MeTOL dose, route	t _{max}	C _{max}	AUC _(0-inf)	Vd _{ss}	Cl	t _{1/2} β
	(hr)	(hr)	(h.μg/ml)	(l/kg)	(ml/min.kg)	(hr)
0.5, i.v.			14.90	0.22	1.69	1.72

n = 3 rats/group

Dogs

3-O-MeTOL dose, route	t _{max} (hr)	C _{max} (hr)	AUC _(0-inf) (h.μg/ml)	Vd _{ss} (l/kg)	Cl (ml/min.kg)	t _{1/2} β (hr)	F
0.5, i.v.			26.76	0.19	0.32	7.46	
1.0, i.v.			30.15	0.24	0.55	6.26	
1.7, p.o.	0.67	7.00	29.06			2.59	57.3
2.0, p.o	1.50	8.40	54.6			7.80 =	_ 86.8

D.2. Single-dose Pharmacokinetics of ¹⁴C-Tolcapone in Rats

Research Report # J-146,430

Volume:

79

Summary:

The single-dose pharmacokinetics of ¹⁴C-tolcapone were determined in male rats administered 5, 20, 100 mg/kg, p.o., or 5 mg/kg, i.v., and female rats administered 20 mg/kg, p.o. Groups consisted of 4 rats.

Following oral administration of ¹⁴C-tolcapone to males, increases in Cmax of total radiolabel, parent compound, or metabolite were less than dose-proportional (Sponsor Table 1). Increases in AUC of the radiolabel and the parent compound were dose-proportional. Tmax increased with dose. The half-life of the parent compound was much shorter than the half-life of the total radiolabel. The bioavailability of tolcapone was moderate (55.0-58.5), and that of the radiolabel was slightly higher (64-70%), suggesting low first-pass metabolism. The Cmax of 3-Q-methyltolcapone was 2.5-5% of the Cmax of the parent compound.

No significant gender differences were evident.

Table 1 Phermacokinetic parameters of ¹⁴C-radioactivity, Re40-7592 and Re40-7591 in blood after single oral and intravenous administration of ¹⁴C-Re40-7592 to rate

•					Phe teacok in	etio cerameters		
	Sex	Ooso (mg/kg)	Route	Tmex (hr)	Cmnx (ua eq./ml)	T1/2 (hr)	AUC(0-∞) (ua ea. thr/mi)	B. A. (%)
		5	l, v.	<u> </u>		11.79 ± 0.69	16.33 ± 0.91	
	Male	5	p. o.	0.38 ± 0.07	6.88 ± 0.67	11.92 ± 1.21	10.77 ± 0.26	
C-radioactivity		20	p. o.	0.63 ± 0.07	17.53 ± 3.20	22.20 ± 3.91	42.02 ± 3.16	
		100	0,0,	2.88 ± 0.83	36.88 ± 3.13	15.90 ± 2.34	230.25 ± 18.76	
	Fomale	20	p. o.	0.63 ± 0.13	19.53 ± 1.10	32.98 ± 4.77	49.85 ± 6.58	
		5_	l.y.		_	0.65 ± 0.02	9.51 ± 0.40	(100)
	Mate	5	p. o.	0.31 ± 0.06~	4.92 ± 0.76	0.93 ± 0.04	5.34 ± 0.23	56.2
Ло40-7592		20 •	p. o.	0.50 ± 0.14	12.31 ± 2.62	1.15 ± 0.15	22.27 ± 2.59	58.5
		100	0.0.	2.63 ± 0.85	23.86 ± 2.33	1.59 ± 0.41	104.53 ± 14.21	55.0
	Female	20 •	р. о.	0.50 ± 0.00	13.75 ± 0.58	0.82 ± 0.02	26.14 ± 2.93	
		5_	i.v.			M.C.	N. C.	
	Male	5	p. o.	0.58 ± 0.16 ·	0.24 ± 0.01	M. C.	N.C.	
Ro40-7591		20 *	p. o.	0.67 ± 0.08,	0.31 ± 0.03	N. Ç.	N.C.	
•		100	0.0.	2.13 ± 0.72	0.85 ± 0.15	N.C.	N. Ct	
	Femile	20 +	p. o.	0.42 ± 0.08	0.30 ± 0.03	N. C.	N.C.	

Data are expressed as the mean values ± S.E. of four animals. (* : three animals)

N.C. : Not calculated

ciol Fudulca.

Tissue distribution following single oral administration of ¹⁴C-Tolcapone (5 mg/kg) to D.3. pigmented rats

Research Report #:

B-113,223

Volume:

80

Summary:

The tissue distribution of 5 mg/kg ¹⁴C-tolcapone was determined in pigmented (piebald) rats (12 M, 12 F) at 0.5-48 hrs after oral administration. Concentrations of radioactivity were determined by scintillation counting.

Maximum levels of radioactivity in tissues were attained at 0.5 hr post-dose (Sponsor Tables 2&3). Highest concentrations were achieved in the in the organs of absorption (gut) and elimination (liver, kidney). The slowest rate of decline in radioactivity levels were in the liver, kidney, and gut. The highest amount of radioactivity detected in brain was 0.04 times the blood level. By 48 hrs, significant levels (0.5 µg equiv/g tissue) were detectable only in the stomach, intestine, kidney, liver, and white skin {the 48 hr measurement in male brain tissue is considered spurious by the reviewer}. A tendency for higher levels in females was noted. This finding could not be statistically evaluated due to the low sample size, but would not be unexpected based on toxicokinetic studies demonstrating higher tolcapone plasma levels in females.

Seese / organ	6.00	.	Times 4 ^{rt}	(hours)	34*	45	
Mood	3.22 : 0.40	2.01 + 0.00	0.01 4 0.00	0.00 ± 0.00	8.02 + 6.00	801 + 800	
heart	6.75 : 6.02	0.00 2 0.01	0.00 ± 0.04	0.10 2 0.05	841 + 840	8.00 ± 8.00	
tunge	1.30 ± 6.30			8.20 + 0.00		0.00 : 0.00	
otomoch .	00.41 ± 05.00	6.70 ± 6.01			0.25 4 0.11		
Intestine	272 2 8.51	0.19 ± 0.06			4.00 ± 1.00		
Mdhey	6.07 g 1.00	4.04 ± 0.27	2.11 g 0.12	5.02 a 0.00	8.87 ± 8.84	840 - 841	
Bver	E.33 1 E.69	4.45 : 0.50	8.00 £ 6.00°	1.23 & 0.43	0.10 ± 0.02	0.00 + 0.00	
annules .	0.87 ± 8.10	0.20 4 0.00	0.18 2 0.10	8.00 A 8.00	0.00 a 0.00	0.01 a 0.00	
atch (white)	0.47 ± 0.58	0.00 ± 0.07	0.20 ± 0.17	0.94 2 0.02	0.00 ± 0.00	8.07 + 0.00	
side (black)	0.00 2 0.02	0.00 ± 1.05	0.40 ± 0.00	0.25 + 0.05	0.05 A 0.00	0.00 4 0.00	
opioen -	0.82 ± 0.00	0.45 ± 0.01	0.17 ± 0.00°	0.14 ± 0.00	8.00 - 8.00	0.00 + 0.00	
fat Brown	0.74 : 0.70	0.20 ± 0.00	0.11 ± 0.00	400 + 440	8.01 + 8.00	0.01 + 0.00	
odr. planda	0.76 s 0.29	0.46 a 0.01	0.22 t 0.00°	0.10 + 0.00	0.00 - 0.01	221 4 200	
brok	0.07 1 0.00	0.00 ± 0.01	0.04 2 0.00	0.00 : 0.01	840 + 840	844 + 800	
teetisise	0.24 : 0.00	9.00 1 9.05	0.21 2 0.08	0.14 ± 0.02	9.01 + 9.00	889 4 889	

			Thee	Aural		
Sees / organ	8.00	80	40	7	844	44"
Mood	ESI & CAT	1.00 2 0.10	0.00 ± 0.00	8.00 ± 8.16	0.00 4 0.00	6.00 ± 6.00
heert	1.00 & 0.00	6.48 ± 6.68	0.00 ± 0.10	E.10 + 0.00	0.01 A 0.00	0.00 ± 0.00
lange	1.00 ± 0.10	640 ± 640	CAR & CAR	ALSO : BAR	0.01 ± 0.00	0.04 ± 0.00
Homosh	84.70 ± 17.80	7.04 2 0.81	16.00°2 2.46	11.10 2 10.07	1.00 ± 1.00	10.00 £ 0.01
Interdise .	18.74 g 8.44	447 ± 440	44.70 4 94.00	40.00 ± 57.00	214 ± 1.00	1.00 a 4.01
Minny	441 : 878	2.77 ± 0.00		2.00 ± 9.00	R11 ± 8.91	0.00 ± 0.00
1	8.37 ± 1.74	4.00 (0.10	436 4 830	0.15 ± 0.00	0.10 a 0.01	0.00 g 0.00,
meetee	0.40 ; 0.10	0.00 ± 0.01	0.10 g 0.00	CAR 4 0.01	0.04 ± 0.05	0.00 ± 0.00
olds (white)	1.10 ± 0.77	0.00 1 0.00	0.00 ± 0.00	8.14 & 8.01	14.0 ± 000	0.00 2 0.00
state (bloods)	1.00 ± 0.27	0.00 ± 0.07	0.00 ± 0.04	0.17 ± 0.00	0.00 4 0.00	0.02 ± 0.00
epican	4.40 ± 8.46	0.20 ± 0.01	AMP 1 CAR	8.10 ± 0.06	0.01 ± 0.01	0.01 2 0.00
fol doors	0.31 ± 0.00	B.12 2 G.01	A12 ± 0.04	0.05 ± 0.02	0.01 ± 0.01	0.00 2 0.00
adr. plands	AUR : AUR	8.15 ± 0.04	0.22 ± 6.00	0.10 2 0.04	0.00 2 0.11	M
breb	0.11 ± 0.00	0.00 ± 0.00	6.00 g 6.00	0.02 g 0.00	MA,	b4
whomes	121 2 0.01	0.40 ± 0.10	E34 2 8.01	0.20 2 0.04	0.01 ± 0.01	M

D.4. Tissue distribution following single oral administration of ¹⁴C-Tolcapone (20 mg/kg) to albino rats

Research Report #: J-146,485

Volume:

80

Summary:

The tissue distribution of 20 mg/kg ¹⁴C-tolcapone was determined in albino Sprague-Dawley rats (15 M, 15 F) at 0.5-24 hrs after oral administration. Concentrations of radioactivity were determined by scintillation counting. Blood, brain, liver, kidney, and small intestine were further analyzed for parent and 3-O-methyltolcapone at 0.5, 2 and 7 hrs after dosing.

Maximum levels of tissue radioactivity were attained at 0.5 hr post-dose. Highest concentrations were achieved in the organs of absorption (gut) and elimination (liver, kidney, bladder). At 0.5 and 2 hrs, intact drug accounted for 40-75% of radioactivity in blood. In other tissues, however, generally less than 10% of radioactivity was tolcapone or 3-O-methyltolcapone. Minor levels of 3-O-methyltolcapone were found in liver, kidney, and small intestine, but blood levels of this metabolite were approximately equivalent to those of parent compound at 7 hrs post-dose. As in the preceding study, only low levels of radioactivity and tolcapone were detected in brain. By 7 hrs post-treatment, neither the parent compound nor the 3-O-methyl metabolite were detected in the liver or kidney (Sponsor Tables 1-4).

An ex vivo plasma protein binding study confirmed in vitro observations that tolcapone is highly bound to plasma proteins (Tables 5 & 6).

			*							7			26."			
THEN	-2394		644		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		941		289.84		44		- Calada		200	_
1.000 ·	1333 4	- 44						- 14		F		4		.14	-	
					II.H #		3.77			23	CM T	4.0	AI7 ±	-01	-	
HAIN	un s								H.D.		N.D.			0.00	400 4	
Imali '	1.81 ±					-			i Ka		N.D.		40.4	0.00	-	ũ
MER	27.13 ±					2.00		: 43	330 ±	es d	4.23 ±	4.65		445		ü
NAT.	N.N ±					1.31	1.27 1				427 ±	0.01		4.11		
MART	4.93 ±	4.51	4	6.01	3.00 ±	1.31 6.27	4.07	0.00		0.00	4	0.00	765	~"	N.O.	
	6.06 ±	LH	LH±	- 6.63	3# ±	4.36	440 4				- 846			- 1		
NOMACIE .	111124 2	23.85	4400 ±				19.40 ±			-	4	-			N.D.	
MAL DITETTURE	23.04 ±		111 ±			334								O.At	All ±	
AALA SITTEFFE CONTINUE		-	131			~~	XX			-		0.15		447	429 ±	
LACE PETER	290 ±	4.0								[林生				ISI ±	9.0
Link	1					0.70	4.36 ±		31L# ± 1			2.00	17.37 🚖	uni	136 ±	-
		430	8.80 ±		L30 ±	613	LER ±				4.00 主		KD.	- 1	KD.	
	3.80 ±	4.00	48 4		439 ±	1,80	0.07 ±			w	440 ±		N.D.	- 1	XQ.	
TOTALY GLAND	3.94 ±	437	LID ±		3.81 ±	0.61	LAN ±	0.00	K.B.	- 1	H.D.		N.D.		ILD.	
MOD G.AID	1.92 ±	4.00	4.00 ±		10 *	0.30	LIP ±	6.00	4.00 4	e isi		440	6.90 ±	833	M ±	
MINLGLAD	1.85 ±	1.00	CH ±	0.00	1.0 ±	MI	140 ±	440	427 ± 4				ND.	~	KD.	
T SALL	6.84 ±	LIG	9.00 ±	0.00	CEP ±	8.14	400 ±					=	K.			
ACAET*	6.66 ±	a.e.f	9.86 ±	LAN	122 4	8.85	7.61 *						48.4	•••	ND.	
MESOFFERS LINEW HOSE	3.41 ±	0.49			1.15 ±							-7	46 ±		6.27 ±	8.0
DARFOR METAL	3.85 ±	8.64		- 1	1.07 ±			ı		-		- 1		ᄦ		
WHITE PAY PAR	LAS ±	8.38		- 1	1,54 &	433		- 1		7		- 1	K.D.	ł		
	1.67 ±	44		- 1	241 ±	4.15		ı		7		- 1	K.D.	- 1		
AND A	138 ±	-						- 1		7		_ 1		w		
NOVE .	19 ž	4.00		- 1	111 ±	114							M.D.			
ADDES.	346 1		444 4	200	13.H ±	-	444	401		100			0.04 ±	140		
m	131 ±		W.			Š, ja			10) ±					8.60	440	44

A white partial other contention of the copies and of an past of other times

	- # R 89				4198				- 44 m/s (mm)	Sel des	4400	\$ d (m)
Throne Human		1	1000							LIGHT E EL	MAN & SA	HEAT & ILL
61.000	12,17		2201.3	- 1,51	7.87 ±	135	1.77 2	4	UI E UI			R.O.
BRADI	6.39	. 0.01		: 649	429.4	4.00	AM &	4.00	N/P	N.D.	N.D.	N.D.
THYMUS	1.46 1	441	440.6		1.00 ±	LJF			0.27 ± 0.81			N.D.
LIMBA	20.00 1				15.65 ±	2.33			4.41 ± 8.25		0.31 ± 0.03	8.85 ± 0.01
REPORT	1424 1				11.30 ±	2.0					836 ± 8.84	
MARY	3.07 1		0.07 1			436			6.19 ± 6.83	600 ± 6.00	M.D.	N.D.
LINE	4.81 1	: LDI	4.99 4	0.00	197 ±	13	MR ±	6.81	8.20 ± 6.00	441 ± 4.00	8.85 ± 8.85	
STORAGE	997.00 1		23,95 ±	5.47	198.43 ±	8531	137 ±	2.90	5.14 ± 2.51	8.73 ± 8.30	6.27 ± 8.13	0.40 ± 0.01
MAALA STRINGS	23,94 4	7.49	437 1	1.06	60.15 ±	3.77	LII ±	2.76	7.40 ± 1.00		1A1 ± 0.34	
SHALL BETTER COMMONS		i	14.40 ±	234			434 +	4.34		100 ± 1,52		121 ± 634
LARGE INTERTON	1.64 1	: 436	422.6	- 4.00	25.77 ±	12.73	131 ±	LID	305.35 ± 35.50	631 ± 10	368 ± 1323	
	285 4		48 4	0.00	LINE	434	AN ±	440	N.D.	N.D.	N.D.	N.D.
PARKETERA	143 4		4.00 ±		LEF ±	134	40 1		40 ± 40		612 ± 680	
PETERST CLASS	3.00 1		400 4		10 4	ü	40 1	-	MA.	N.D.	MD.	MA.
	191		440 4	0.00	LSP ±	40	400 ±		40 2 43		N.D.	ii.
ACCOUNT. CLAND	241 1	: 1.94	441 ±	0.00	2.01 ±		400	0.00	4.30 ± 4.65	40 ± 44	ILD.	XD.
CHINAL.	431		400		LTI E		-	440			ili.	20.
CHECKEP	1,96 4		1.01 ±		131 ±		431 ±		All ± M	15 2 45	401 ± 401	431 ± 441
MANAGER PROPERTY NAMED IN					133 ±	-			- W - W		U) ± 0.06	
MACHINI PAT PAD	194 4				13 ±	H			A7 ± 400		- Ka	
WHITE PAT MA	134 4			- 1	- THE				A	ľ	100 I	
	231 4			- 1	1 10 ±				37	•	100	
MARCA				ı	434 ±	a.is		J	W = W		765 I	
ninet.	L75 4			- 1					- AL		NA I	
1,400	14.55		48 4	400	131 1		441 4	أسم	20 2 10			
VIEWS .	183		= :		12 i	-	#		## W	#: #		Wit Co
OWARY	ű.		- Gi i		_ in i	73	= 1	777	3 : 3	- H	M.D.	ND.
TOTAL	_3/13	-14	-1011				137	풺		- 101 101		KD.
IVIO				_			- 10/1	1/1				1130 # 339

female rats

to make rate at a dose of 20 mg/kg

				LIVE	R		KIDNEY					
		0.5hr		2hr		7hr	0.5h		2hr		7hr	
Re 40-7592	p g eq/g thoses	1.14 ±	0.23	1.04 ±	0.23	N.D.	0.44 ±	0.07	0.69 ±	0.13	N.D.	
	% of ^H C-redisectivity	4.85 ±	0.39	434 ±	0.63	N.D.	1.16 ±	0.06	231 ±	0.32	N.D.	
Re 40-7591	/ g eq/g thoses	0.06 ±	0.01	0.09 ±	0.01	N.D.	N.D.		N.D.		N.D.	
	S of MC redicectivity	0.24 ±	0.05	0.38 ±	9.00	N.D.	N.D.		N.D.	.	N.D.	
Total	% of "C-radioactivity		0.45	4.72 ±	18.0	N.D.	1.16 ±	0.06	231 ±	0.32	N.D.	

			3)	MALL IN	TESTIN	8		BRAIN				
	ſ	0.5hr		21	¥	7hr	0.5hr	2hr	7hr			
Ro 40-7392 Jr E 09/1		0.71 ±	0.21	4.74 :	0.44	N.D.	N.D.	N.D.	N.D.			
	endoard-by	2.98 ±	0.44	5.29 ±	9.54	N.D.	N.D.	N.D.	N.D.			
to 40-7991 # 8 mg/s	dom	N.D.		0.13 #	0.02	N.D.	N.D.	N.D.	N.D.			
% of "C	endennisty	N.D.	1	0.14	: 0.02	. N.D.	N.D.	N.D.	M.D.			
Total S of "C	referensists.	298 ±	0.44	5.43 :	0.54	N.D.	N.D.	N.D.	ND.			

		BLOOD									
		0.5%		2hr		7hr					
Re 40-7392	In 2 and 2 theres	6.42 ±	1.23	5.66 ±	194	0.16 ±	0.04				
	S of "Gradinately	41.14 ±	1.82	55.97 ±	17.19	22.93 ±	3.79				
Re 40-7391	# 2 cq./g times	930 ±	0.10	0.27 ±	0.10	0.17 ±	0.04				
	S of *Condensately	1.25 ±	0.39	2.93 ±	1.27	25.36 ±	<u> 4.22</u>				
Total	S of ¹⁴ C-redescrivity	43.16 ±	2.11	51.00 ±	18.63	41.29 ±	5,83				